

Code No: RT22044

SET - 1

II B. Tech II Semester Supplementary Examinations, November-2017 EM WAVES AND TRANSMISSION LINES (Com to ECE, EIE)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**) 2. Answer **ALL** the question in **Part-A**

3. Answer any **THREE** Questions from **Part-B**

PART -A

1.	a)	Define Linear, isotropic and homogeneous dielectrics.	(4M)
	b)	Write the equation for V_{emf} of moving loop in time varying field.	(3M)
	c)	Sketch the plots of E and H as a function of distance and time in free space.	(4M)
	d)	What is Brewster's angle? Explain.	(4M)
	e)	Draw the L – type equivalent circuit model of a two conductor transmission line.	(3M)
	f)	What is meant by stub? Explain.	(4M)
<u>PART –B</u>			
2.	a)	Derive Poisson's and Laplace equations from fundamentals.	(8M)
	b)	A hollow conducting cylinder has a inner radius 'a' and outer radius 'b' and carries a current 'I' along the positive z-direction. Find H everywhere.	(8M)
3.	a)	State and explain Faraday's law of electromagnetic induction.	(8M)
	b)	A conducting circular loop of radius 20 cm lies in the $z = 0$ plane in a magnetic field B = 10 cos 377t a mWb/m ² Calculate the induced voltage in the loop	(8M)
4.	a)	What are the properties of uniform plane wave? Show that for a uniform plane	(8M)
		wave, the field components are zero in the direction of propagation of it.	
	b)	A uniform plane wave in air has $\mathbf{E} = 10 \cos(2\pi \times 10^6 t - \beta z) \mathbf{a}_y \text{ V/m.}$	(8M)
		(i) Calculate p and λ . (ii) Sketch the wave at $z = 0.2/4.2/2$	
		(ii) Sketch the wave at $Z = 0$, $M4$, $M2$.	
5	a)	State and explain poynting theorem	(8M)
5.	h)	In free space $(z \le 0)$ a plane wave with $\mathbf{H} = 10 \cos(10^8 t - \beta z)\mathbf{a}$, mA/m is incident	(8M)
	0)	normally on a lossless medium ($\varepsilon = 2\varepsilon_0$, $\mu = 8\mu_0$) in the region $z > 0$ Determine	(0101)
		the reflected wave H_r , E_r and the transmitted wave H_t , E_t .	
6	0)	Define the term characteristic impedance and derive the expression for it	(9M)
0.	a) b)	Define the term characteristic impedance and derive the expression for it. Measurements on a lossy transmission line at 800 MHz indicate $Z_0 = 50 \pm i0.0$ g	$(0\mathbf{M})$
	0)	= 0.01 Np/m and β = 4 rad/m. determine the line parameters R, L, G and C.	(011)
_			(03.5)
7.	a)	Explain the construction of Smith Chart.	(8M)
	b)	A 50 Ω coaxial cable feeds a 75 + j20 Ω dipole antenna. Find reflection coefficient	(8M)

www.ManaResults.co.in

and standing wave ratio.