

Code	No: R10103	(R10)		ET - 1
I B. Tech I Semester Supplementary Examinations, May - 2017 ENGINEERING PHYSICS-I (Com. to All Branches)				
Time: 3 hours Max. M				arks: 75
	A All ~~~	Answer any FIVE Questions Questions carry Equal Marks		
1. a)	What is Interference of light interference. Explain Young'	ht? Describe the conditions necessary 's experiment demonstrating interference	for sustained of light.	(10M)
b)	In a Newton's ring experime of its value on introducing a the refractive index of the liq	ent the diameter of the 5 th dark ring is re liquid below the convex surface of the le uid.	duced to half ens. Calculate	(5M)
2. a) b)	Describe qualitatively Fraunh Differentiate between single pattern.	hofer diffraction at single slit. e–slit diffraction pattern and double sl	it diffraction	(10M) (5M)
3. a) b)	Discuss various types of pola Define Double refraction. ordinary rays	arized lights. Give the differences between ordinar	y and extra-	(10M) (5M)
4. a)	Define atomic packing facto FCC structures.	or. Calculate atomic packing factor for S	SC, BCC and	(10M)
b)	The atomic radius of coppe density of copper.	T is 1.278 A^{0} . It has atomic weight 63	.54. Find the	(5M)
5. a)	Derive an expression for the cubic structure.	e inter planar distance in terms of Miller	indices for a	(10M)
b)	Sketch the following atomic (111).	planes in a simple cubic structure: (01	0), (110) and	(5M)
6. a) b)	What is a semiconductor lase Explain application of lasers	er? Describe its construction and working in medical field.	, .	(10M) (5M)
7. a) b)	Define Acceptance angle of a With the help of neat labeled fibres.	an optical fibre and derive an expression diagrams explain step-index and graded	for it. index optical	(7M) (8M)
8. a)	Explain the basic principle importance of couplant.	involved in ultrasound testing and a	lso write the	(10M)
b)	Elucidate the use of ultrasoni	ics in mechanical field.		(5M)

(D10)

Page 1 of 1