II B. Tech II Semester Supplementary Examinations, April/May-2017 ELECTRICAL CIRCUIT ANALYSIS - II
 (Electrical and Electronics Engineering)

Answer any FIVE Questions
 All Questions carry Equal Marks

1. a) Explain how reactive power can be measured in balanced three phase systems.
b) A balanced three-phase star connected load of 200 kW takes a loading current of 150 A with a line voltage of $1200 \mathrm{~V}, 60 \mathrm{~Hz}$, What are the circuit constants of the load per phase?
2. a) An unbalanced Y - connected load has a three wire supply with a line voltage of 400 V and frequency 50 Hz . The load components are $R_{1}=R_{2}=R_{3}=60 \Omega$ and $L_{3}=485 \mathrm{mH}$. Calculate the line currents and load currents.
b) Explain the power factor measurement using two watt meters method and derive necessary expression.
3. A series RC circuit consists resistor of 20Ω and capacitor of 0.2 F as shown in Figure 1. A constant voltage of 30 V is applied to the circuit at $\mathrm{t}=0$. Obtain the current equation. Determine the voltage across the resistor and the capacitor.

Figure 1
4. a) Derive the complete solution for transient response in series R-L circuit for AC excitation.
b) Assuming zero initial conditions. Find the current response for the following network in below Figure 2.

Figure 2

1 of 2
5. a) Express z-parameters in terms of y-parameters and h-parameters
b) Determine the Y- parameters of the network shown in Figure 3.

Figure 3
6. Find the y-parameters for the network shown in Figure 4 by considering it to be a parallel combination of a capacitive network referred to as N_{a} and a resistive network referred to as N_{b}.

Figure 4
7. a) Explain about the exponential form of Fourier Series.
b) A square wave symmetrical above and below ground has a peak amplitude of 6 V , as
illustrated in Figure 5. Determine the amplitude of each component up to the seventh harmonic.

8. a) Calculate the fraction of the total energy dissipated by a 4Ω resistor in the frequency band $-10<\omega<10 \mathrm{rad} / \mathrm{s}$ when the voltage across it is $\mathrm{V}(\mathrm{t})=\mathrm{e}^{-2 \mathrm{t}} \mathrm{u}(\mathrm{t})$.
b) Find the Fourier transform of the following functions.
i) $e^{j \omega t}$
ii) $\cos \omega_{0} t$.

