I B. Tech I Semester Supplementary Examinations, April/May - 2017

ENGINEERING MECHANICS
(Com. to CE, EEE, ME, CHEM, BOT, AE, AME, MTE, MM, PE, PCE)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is Compulsory
3. Answer any FOUR Questions from Part-B

PART-A

1. a) State and prove principle of transmissibility of forces.
b) Define a Free Body Diagram. Give two examples.
c) Define centriod and centre of gravity, with examples.
d) Find the product of inertia of a rectangle of sides \mathbf{a} and \mathbf{b} with respect to the axes that lie along its two sides.
e) A particle of mass m moves rectilinearly under the action of a force $F=F_{0} \sin \omega t$ Determine the displacement-time equation, assuming initial displacement and velocity are zeros.
f) The maximum range of a projectile is 2000 m . What should be the angle of elevation so as to obtain a range of 1400 m if the initial velocity remains unchanged?

PART - B

2. a) Two smooth circular cylinders, each of weight $\mathrm{W}=1000 \mathrm{~N}$ and radius 15 cm , connected at their centres by a string AB of length 40 cm and rest upon a horizontal plane supporting above them a third cylinder of weight 2000 N and radius 15 cm as shown in fig. below. Find the force in string AB and the pressure produced on the floor at the points of contact D and E .

b) A body weighing 20 N is projected up a 20° inclined plane with a velocity of 12 m / s, coefficient of friction is 0.15 . Find the maximum distance S that the body will move up the inclined plane.
3. A vertical mast AB is supported in a ball and socket joint at A and by cables BC and DE as shown below. A force $\mathrm{F}=500 \mathrm{i}+400 \mathrm{j}-300 \mathrm{k}$ is applied at B . Calculate the reaction provided by the ground at A .

4. a) Locate the centroid for the shaded area as shown in below Figure. All dimensions are in mm .

b) Find the centroid of a quarter circular line from basic principles.
5. a) Determine the moment of inertia for the area given below about axis AB .

b) From basic principles find the moment of inertia of a solid disc.
6. A solid cylinder weighing 1200 N is acted upon by a force P horizontally as shown in figure below. Determine the maximum value of P for which there will be rolling without slipping. If $\mathrm{P}=1000 \mathrm{~N}$, determine the acceleration of the mass centre and the angular acceleration, given that the coefficient of static friction $\mu_{\mathrm{s}}=0.2$. And the co-efficient of kinetic friction $\mu_{\mathrm{k}}=0.15$.

7. a) Find the tension in the string as shown in the figure below.

b) Derive work energy equation of translation.
