III B.Tech I Semester Supplementary Examinations, October/November - 2017 FINITE ELEMENT METHODS

 (Common to Mechanical Engineering and Automobile Engineering)Time: $\mathbf{3}$ hours

Max. Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

1 a) Write the advantages, disadvantages and applications of FEM.
b) Explain the potential energy formulation for obtaining element equations in Finite element methods.

2 a) What is the importance of natural coordinate system in the formulation of the finite element equations? Obtain the interpolation functions for a two noded axial element using local coordinate system, global coordinate system and natural coordinate system.
b) Discuss the effect of element shape and size on the convergence of the finite element solution.

3
Estimate the displacement vector, stresses and reactions for the truss structure as shown in fig. $1 \quad \mathrm{E}=20 \times 10^{6} \mathrm{~N} / \mathrm{cm}^{2}, \mathrm{~A}=200 \mathrm{~mm}^{2}$

Fig. 1

4 a) Derive Hermite shape functions and also discuss its properties.
b) Obtain the finite element equations for a beam element using the Hermite shape functions.
b) Nodal coordinates for an Axi-Symmetric element are given below. Evaluate

Stiffness Matrix. $E=2 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}, \mathrm{v}=0.25$.

6 a) Derive the shape functions of two dimensional four noded iso-parametric elements.
Plot the shape functions.
b) Write a note on two point integration rule for 1-D and 2-D problems.

7 A circular fin of inner diameter 200 mm and outer diameter of 300 mm transfers heat from a small motorcycle engine. If the average engine surface temperature is $200^{\circ} \mathrm{C}$, determine the temperature distribution along the fin surface. The thermal conductivity of the fin material is $20 \mathrm{~W} / \mathrm{m}{ }^{0} \mathrm{C}$ and the convective heat transfer coefficient between the fin and the atmosphere is $120 \mathrm{~W} / \mathrm{m}^{20} \mathrm{C}$. Assume an atmospheric temperature of $30^{\circ} \mathrm{C}$. Use at least three one dimensional elements.

Explain the following
a) Consistent vs. lumped mass matrices
b) Free vibration analysis using FEM.

