Code No: R41011

R10

Set No. 1

IV B.Tech I Semester Supplementary Examinations, March - 2017
 GEOTECHNICAL ENGINEERING - II
 (Civil Engineering)

Time: $\mathbf{3}$ hours

Max. Marks: 75

Answer any FIVE Questions
 All Questions carry equal marks

1 a) What do you understand by disturbed and undisturbed soil samples? Explain the salient features of soil investigation report.
b) Describe the pressuremeter test conducted in soil exploration.

2 a) Discuss the different types of slope failures and factor of safeties used in the slope stability analysis.
b) Stability analysis by the method of slices for $1: 1$ slope on the critical slip gave the following results: Sum of tangential forces $=150 \mathrm{kN}$; Sum of normal forces $=320 \mathrm{kN}$; Sum of neutral forces $=50 \mathrm{kN}$; Length of failure surface $=18$ m ; Angle of shearing resistance $=15^{\circ}$; Effective cohesion $=20 \mathrm{kN} / \mathrm{m}^{2}$. Calculate the factor of safety with respect to the shear strength.

3 a) Critically explain the theories of earth pressures due to Rankine and Coulomb and indicate the fundamental assumptions ineach theory.
b) A retaining wall 5 m high retains sand. In the loose state the sand has a void ratio of 0.63 and $\varphi=30^{\circ}$, while in the dense state, the corresponding values of void ratio and φ are 0.36 and 45° Estimate the passive earth pressure in the two cases, assuming $\mathrm{G}=2.67$.

4 a) Explain the design approach of cantilever retaining wall.
b) A masonry retaining wall of trapezoidal with the vertical face on the earth side is 1.5 m wide at the top and 3.5 m wide at the base and is 6 m high. It retains a horizontal sand back fill with $\varphi=30^{\circ}$. The unit weight of sand is $19 \mathrm{kN} / \mathrm{m}^{3}$. Check the safety of the wall against overturning and sliding. The unit weight of masonry is $22 \mathrm{kN} / \mathrm{m}^{3}$.

Set No. 1

5 a) Derive the Terzaghi's bearing capacity equation under strip footing.
b) A square footing is to be designed to carry a column load of 500 kN . If the depth of the foundation is 1.5 m , determine the suitable size of foundation with a factor of safety of 3 . The water table is at foundation level. Take bulk unit weight as 18 $\mathrm{kN} / \mathrm{m}^{3}$ and saturated unit weight as $21 \mathrm{kN} / \mathrm{m}^{3}$. The angle of internal friction is 25°. Terzaghi's bearing capacity factors are $\mathrm{N}_{\mathrm{c}}=14.8 ; \mathrm{Nq}=5.6$ and $\mathrm{N}_{\gamma}=3.2$.

6 a) Explain the allowable bearing pressure and allowable settlements of shallow foundations.
b) Discuss the methods for the estimation of safe bearing pressure based of Standard Penetration number.

7 a) How do you estimate the load carrying capacity of a single pile foundation in cohesionless and cohesive soils?
b) A group of 9 piles with 3 piles in a row were driven into soft clay. The diameter and length of the piles were 300 mm and 10 m respectively. The unconfined compressive strength of the clay is $70 \mathrm{kN} / \mathrm{m}^{2}$ and adhesion factor is 0.85 . If the piles are placed at 0.9 m centre to centre spacing, compute the pile group capacity.

8 a) Discuss the various forces acting on a well foundation.
b) What are the different shapes of well foundation and what are their comparative merits and demerits.

