ww.FirstRanker.com

www.FirstRanker.com

Set No. 1

Code No: **R32033**

III B.Tech II Semester Supplementary Examinations, April -2017

HEAT TRANSFER

(Mechanical Engineering)

Time: 3 hours

Max. Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

- 1 a) Explain the different modes of heat transfer with neat sketches. Write down the basic [5M] laws of heat transfer
 - b) Derive the one-dimensional, steady state heat conduction equation with internal heat [10M] generation by writing the energy balance for a differential equation volume element in cylindrical coordinate system
- A furnace wall is made up of three layers of thicknesses 250mm,100mm and 150 mm [15M] with thermal conductivities of 1.65,k and 9.2 W/m⁰C respectively. The inside is exposed to gases at 1250° C with a convection coefficient of 25W/m² ⁰C and the inside surface is at 1100° C, the outside surface is exposed air at 25° C with convection coefficient of 12W/m² ⁰C. Determine
 - (i) The unknown thermal conductivity k
 - (ii) The overall heat transfer coefficient
 - (iii) All surface temperatures
- 3 a) What are Biot and Fourier's numbers? Explain their significance [5M]
 - b) An aluminum sphere weighing 7 kg and initially at a temperature of 260° C is [10M] suddenly immersed in a fluid at 10° C.If h=50W/m²k, compute the time required to cool the sphere to 90° C. For aluminium: ρ =2707kg/m³,c=9000 J/kg^oC,k=204W/m^oC

4 a) Distinguish between natural and forced convection heat transfer [5M]

- b) The surface temperature of the steel wall (k=53.6W/mK)0.3 thick are maintained at 100^{0} C and 40^{0} C.water at a temperature of $T_{q}=20^{0}$ C flows over the surface at 40^{0} C.Calculate the convection coefficient associated with the water flow.
- 5 Air flows through a long rectangular (30cm heightx60 cm width) air conditioning [15M] duct maintains the outer duct surface temperature at 15^{0} C.If the duct is insulated and exposed to air at 25^{0} C,calculate the heat gained by the duct per meter length, assuming it to n=be horizontal
- 6 a) Distinguish between film wise and drop wise condensation. Which of the two does [5M] give a higher heat transfer coefficient? Why?
 - b) A vertical tube 12.5 mm diameter and 1.7 m long is used for condensing steam at 0.4 [10M] bar. The tube surface temperature is maintained at 54^oC. Determine the average heat transfer coefficient in condensation. What would be the value of the heat transfer coefficient if the plate were held in horizontal position?

1 of 2

Ker.com www.FirstRanker.com

www.FirstRanker.com

Set No. 1

[5M]

Code No: R32033

FirstRan

Firstranker's choice

7 a) When is the LMTD method is most suitable for heat exchanger design calculations [5M]

R10

- b) In a shell and tube heat exchanger with 8 tube passes through a shell, hot engine oil [10M] available at 160° C flows through the shell and water through the tubes. Water at the rate of 2.5Kg/s is heated from 15° C to 85° C and there are ten tubes per pass. The diameter of each tube is 2.5 cm and the average convection coefficient $h_0=400$ W/m²K.Determine the flow rate of oil if its exit temperature is to be 100° C. Also compute the length of the tubes
- 8 a) Define the terms absorptivity, reflectivity and transisivity
 - b) A long steel rod of 2 cm diameter (ε =0.6) is to be heated from 400⁰C to 500⁰C.For [10M] this purpose it is placed concentrically in a long cylindrical furnace having an inside diameter of 16 cm. The inside surface of the surface is at the temperature of 1100⁰C and an emissivity of 0.85.Find the time required for the heating operation. The density of the steel is 5700kg/m³ and its specific heat is 0.486KJ/kgK.

