

Code No: **RT41022** 





Set No. 1

IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017 HVAC AND DC TRANSMISSION

(Electrical and Electronics Engineering)

**Time: 3 hours** 

Max. Marks: 70

[4]

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B \*\*\*\*\*

# PART-A (22 Marks)

1. a) What are the properties of bundled conductors?

| b)  | What are the causes for RI and RIV generation in transmission lines? | [4]   |
|-----|----------------------------------------------------------------------|-------|
| ``` |                                                                      | Г 4 Э |

- Give the comparison between HVAC and HVDC transmission. [4] c)
- What the effect of source induction on the performance of HVDC transmission. [3] d) [3]
- What is the role of synchronous condenser in HVDC transmission? e) [4]
- What are the adverse effects of harmonics? f)

## $PART_R (3r16 - 48 Marks)$

| -  |          |                                                                                                                                                                            |             |
|----|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| 2. | a)<br>b) | Explain about the power handling capacity and power loss in EHV transmission line.<br>A 735 kW line has $N = 4$ , $r = 0.0176$ m, $P = 0.4572$ m for the bundled conductor | [8]         |
|    | b)       | A 735 kV line has $N = 4$ , $r = 0.0176$ m, $B = 0.4572$ m for the bundled conductor of each phase. The line height and phase spacing in horizontal configuration are      |             |
|    |          | H = 15, S = 15 m. Calculate the maximum surface voltage gradients on the                                                                                                   |             |
|    |          | centre phase and outer phases.                                                                                                                                             | [8]         |
|    |          |                                                                                                                                                                            | [-]         |
| 3. | a)       | Using charge-voltage diagram, show that energy loss in EHV conductor in the                                                                                                |             |
|    |          | presence of corona is $P_C = \frac{1}{2} KC (V_m^2 - V_0^2)$ .                                                                                                             |             |
|    |          | -                                                                                                                                                                          | [10]        |
|    | b)       | Explain briefly about measurement of excitation function.                                                                                                                  | [6]         |
| 4  | 2)       | Drow the schematic discourse of territy UUVDC convertor station and evaluin the                                                                                            |             |
| 4. | a)       | Draw the schematic diagram of typical HVDC converter station and explain the functions of equipment in it.                                                                 | <b>FQ</b> 1 |
|    | b)       | Briefly explain the different types of HVDC links and their relative merits.                                                                                               | [8]<br>[8]  |
|    | 0)       | bieny explain the different types of fiv be miks and then relative ments.                                                                                                  | [0]         |
| 5. | a)       | Draw the complete converter control characteristics and explain the process of                                                                                             |             |
|    | ,        | power reversal.                                                                                                                                                            | [8]         |
|    | b)       | A Graetz bridge operates with a delay angle of $15^{\circ}$ . The leakage reactance of                                                                                     |             |
|    |          | the transformer is 10 $\Omega$ . The line to line voltage is 90 kV. Compute the direct                                                                                     |             |
|    |          | voltage and overlap angle if $I_d = 2500$ A.                                                                                                                               | [8]         |
| ~  | `        |                                                                                                                                                                            | 101         |
| 6. | a)       | Why Reactive power sources need to be employed in a converter station?                                                                                                     | [8]         |
|    | b)       | Discuss about the alternate control strategies which need to be adopted for reactive power control in HVDC links.                                                          | [8]         |
|    |          | reactive power control in 11 v DC miks.                                                                                                                                    | [0]         |
| 7. | a)       | Explain with a neat diagram about the functionalities of single tuned filter.                                                                                              | [8]         |
|    | b)       | How do you estimate the harmonic order based upon pulse number of HVDC                                                                                                     | L - J       |
|    | ,        | converter station? Give a detailed harmonic analysis of a 12 pulse converter for                                                                                           |             |
|    |          | characteristic harmonics.                                                                                                                                                  | [8]         |

1 of 1





**R13** 



#### IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017 HVAC AND DC TRANSMISSION (Electrical and Electronics Engineering)

Time: 3 hours

Code No: **RT41022** 

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B \*\*\*\*\*

## PART-A (22 Marks)

| 1. | a)       | What are the problems with EHV AC transmission?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [4] |
|----|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | b)       | Explain briefly about RI excitation function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | [3] |
|    | c)       | Draw the diagrams of various types of DC links                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [4] |
|    | d)       | Explain briefly about starting and stopping of HVDC link.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | [4] |
|    | e)       | What are the various sources of reactive power in HVDC converters?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [3] |
|    | f)       | Write the differences between characteristics harmonics and non-characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |
|    | <i>,</i> | harmonics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [4] |
|    |          | $\underline{\mathbf{PART}}_{-\mathbf{B}} (3x16 = 48 Marks)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
| 2. | a)       | Show that equivalent radius of a bundled conductor is $r_{eq} = R \left[ \frac{N \cdot r}{R} \right]^{\frac{1}{N}}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [8] |
|    | b)       | A power of 2000 MW is to be transmitted from a super thermal power station in central India over 800 km to Delhi. Use 400 kV and 750 kV alternatives. Suggest the number of circuits required with 50 % series capacitor compensation, and calculate the total power loss and loss per km. (Assume resistance of conductor for 400 kV and 750 kV as 0.031 and 0.0136 ohm/km & reactance of conductor for 400 kV and 750 kV as 0.227 at 0.272 km as 0.227 km as | [0] |
|    |          | for 400 kV and 750 kV as 0.327 and 0.272 ohm/km).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [8] |
| 3. | a)       | Explain the generation, characteristics, limits and measurement of audio noise due to corona in EHV lines.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [9] |
|    | b)       | For $r = 1$ cm, $H = 5$ m, $f = 50$ Hz, calculate corona loss $P_C$ according to Peek's formula when $E = 1.1 E_0$ , and $\delta = 1$ . Also calculate corona current.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [7] |
| 4. | a)       | Explain planning and modern trends used in HVDC transmission system to improve its reliability and performance.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [8] |
|    | b)       | Compare HVDC and HVAC systems with respect to (i) Cost (ii) Voltage control (iii) stability limits (iv) reliability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [8] |
| 5. | a)       | Draw the configuration of 12-pulse converter and explain with the help of its characteristics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [8] |
|    | b)       | Briefly explain the current and extinction angle control schemes in HVDC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |
|    |          | systems.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [8] |



Code No: **RT41022** 





| 6. | a) | Discuss how reactive power requirement is met using synchronous condensers and AC filters. | [8] |
|----|----|--------------------------------------------------------------------------------------------|-----|
|    | b) | Discuss about conventional control strategies for reactive power control in HVDC link.     | [8] |
| 7. | a) | Discuss about various types of AC filters which will be employed for a HVDC link.          | [8] |

b) A double tuned AC filter at certain HVDC converter station has the following parameters:  $C_1=0.77 \ \mu\text{F}$ ,  $C_2=31.69 \ \mu\text{F}$ ,  $L_1=94.43 \ \text{mH}$ ,  $L_2=2.29 \ \text{mH}$ , f=50Hz, V<sub>1</sub>=400 kV. Compute  $\omega_1$ ,  $\omega_2$  and Q<sub>r</sub>. [8]

www.firstRanker.com

2 of 2



Code No: RT41022

**Time: 3 hours** 





IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017

HVAC AND DC TRANSMISSION

(Electrical and Electronics Engineering)

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B \*\*\*\*\*

## PART-A (22 Marks)

| 1. | a) | What are the various types of conductor vibrations in a transmission line? | [4] |
|----|----|----------------------------------------------------------------------------|-----|
|    | b) | Derive the relation between single-phase and 3-phase audible noise levels. | [4] |
|    | c) | Give the applications of HVDC transmission systems.                        | [4] |
|    | d) | What is the principal of HVDC Link control?                                | [3] |
|    | e) | What is the need of reactive power control in HVDC power stations?         | [3] |
|    | f) | Discuss the effect of pulse number on harmonics.                           | [4] |

### $\underline{PART-B} (3x16 = 48 Marks)$

| 2. | a) | Derive the Magnoldt formula for the calculation of maximum surface voltage                   |     |
|----|----|----------------------------------------------------------------------------------------------|-----|
|    |    | gradient on the high voltage lines.                                                          | [9] |
|    | b) |                                                                                              |     |
|    |    | 515.7 mm <sup>2</sup> . Calculate the resistance of 1 km of a double-Moose bundled           |     |
|    |    | conductor at 50°C given that $\rho_a = 2.7 \times 10^{-8}$ ohm-m at 20°C and temperature     |     |
|    |    | resistance coefficient of A1= 4.46 $\times$ 10 <sup>-3/o</sup> C. (Increase length by 5% for |     |
|    |    | stranding.)                                                                                  | [7] |
|    |    |                                                                                              |     |
| 3. | a) | List out different corona loss formulae available for calculation of corona loss             |     |
|    |    | and explain them briefly.                                                                    | [8] |

- b) An overhead conductor of 1.6 cm radius is 10 m above ground. The normal voltage is 133 kV r.m.s. to ground (230 kV, line-to-line). The switching surge experienced is 3.5 p.u. Taking experimental factor, K = 0.7, calculate the energy loss per km of line. Assume smooth conductor. [8]
- Discuss the economic and technical advantages of HVDC transmission over 4. a) EHVAC for transmitting bulk power from point to point based on Insulation requirements and stability. [9] b) Discuss about back to back HVDC link. How does it compare with other types? [7] Explain the following firing angle control schemes: (i) Individual Phase Control 5. a) (IPC) (ii) Equidistant Pulse control (EPC). [8] Explain clearly the procedure for start up of a DC link with both long-pulse and b)
  - short- pulse firing. [8]
- 6. a) What are the various types of AC filters employed in HVDC and discuss any two filters in detail? [8]
  b) Describe the method of Compensation of reactive power in HVDC substation
  - b) Describe the method of Compensation of reactive power in HVDC substation. Draw simple single line schematics for each. [8]

1 of 2



#### Code No: RT41022



Set No. 3

| 7. | a) | What do you understand by characteristic and non characteristic harmonics in |     |
|----|----|------------------------------------------------------------------------------|-----|
|    |    | HVDC System?                                                                 | [8] |

b) Show that lowest current harmonic generated in a 6-pulse Graetz converter is of the order 5<sup>th</sup> and its magnitude is 1/5<sup>th</sup> of the fundamental. Mention the assumptions made.

www.FirstRanker.com



Code No: **RT41022** 





Max. Marks: 70

# IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017 HVAC AND DC TRANSMISSION

(Electrical and Electronics Engineering)

Time: 3 hours

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B \*\*\*\*\*

## PART-A (22 Marks)

| 1. | a) | How to calculate the surface voltage gradient on bundled conductors.              | [4] |
|----|----|-----------------------------------------------------------------------------------|-----|
|    | b) | The audible noise level of one phase of a 3-phase transmission line at a point is |     |
|    |    | 50 dB. Calculate (i) the Sound Pressure Level (SPL) in Pascals; (b) if a second   |     |
|    |    | source of noise contributes 48 dB at the same location, calculate the combined    |     |
|    |    | AN level due to the two sources.                                                  | [4] |
|    | c) | Write the demerits of monopolar, bipolar and homopolar DC links.                  | [4] |
|    | d) | Why reverse power flow is needed in HVDC system.                                  | [3] |
|    | e) | What is the role of shunt capacitors in HVDC transmission?                        | [3] |
|    | f) | Explain the significance of AC filters in HVDC system.                            | [4] |
|    |    |                                                                                   |     |
|    |    |                                                                                   |     |

## **<u>PART-B</u>** (3x16 = 48 Marks)

| 2. | a) | Discuss the charge-potential relations in multi-conductor lines.                  | [8]  |
|----|----|-----------------------------------------------------------------------------------|------|
|    | b) | The configuration of some EHV lines for 400 kV to 1200 kV is given. Calculate     |      |
|    |    | $r_{eq}$ of each.                                                                 |      |
|    |    | (i) 400 kV:N=2, d=2r=3.18 cm, B=45 cm (ii) 750 kV: N=4, d=3.46 cm, B=45 cm        |      |
|    |    | (iii) 1000 kV: N=6, d=4.6 cm, B=12 d (iv) 1200 kV: N=8, d=4.6 cm, R=0.6 m         | [8]  |
|    |    |                                                                                   |      |
| 3. | a) | Discuss the frequency spectrum of the radio interference field produced in an     |      |
|    |    | EHV line.                                                                         | [8]  |
|    | b) | A single conductor 6.35 cm in diameter of a 525-kV line (line-to-line voltage) is |      |
|    |    | strung 13 m above ground. Calculate (i) the corona-inception voltage and (ii)     |      |
|    |    | the effective radius of conductor at an overvoltage of 2.5 p.u. Consider a        |      |
|    |    | stranding factor $m = 1.25$ for roughness. (iii) Calculate the capacitance of     |      |
|    |    | conductor to ground with and without corona. Take $\delta = 1$ .                  | [8]  |
|    |    |                                                                                   |      |
| 4. | a) | Compare the power transfer capacities of HVAC and HVDC transmission               |      |
|    |    | systems when an existing HVAC line is converted into HVDC line, with              |      |
|    |    | following conditions: (i) Same current and insulating level (ii) Same percentage  |      |
|    |    | losses and insulation level.                                                      | [10] |
|    | b) | Explain about apparatus required for HVDC Systems.                                | [6]  |

- 5. a) With block diagram, explain the hierarchical control structure for a DC link. [8]
  - b) Explain the working of a Graetz circuit with the help of neat schematic and relevant waveforms. Show that its aggregate valve rating is 2.094 P<sub>d</sub>, where P<sub>d</sub> is dc power.

1 of 2



#### Code No: RT41022

**R13** 

- 6. a) Plot the characteristics which show the variation of reactive power as a function of active power and also develop the equations for them? [8]
  b) A back to back HVDC link with one bridge at each end is transmitting 100 MW
  - with  $V_d = 100 \text{ kV}$ . If  $\alpha = 15^0$ ,  $\gamma = 18^0$ , find ideal no-load direct voltage of rectifier ( $V_{dor}$ ), ideal no-load direct voltage of inverter ( $V_{doi}$ ), reactive power  $Q_r$  and  $Q_i$ . Assume  $R_{cr}$  and  $R_{ci} = 12\Omega$ . Also if the DC link is controlled such that  $Q_i$  is kept at a value calculated earlier find  $V_d$ ,  $I_d$ ,  $Q_r$ ,  $\alpha$  and  $\gamma$  for  $P_d=50 \text{ MW}$ . [8]
- Give a detailed account of design aspects of the following filters:
  (a) Single tuned filter
  (b) Double tuned filter.

[16]

www.FirstRanker.com