

Code No: **RT41025**

R13

IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017 **INSTRUMENTATION**

(Common to Electrical and Electronics Engineering and Mechanical Engineering) Time: 3 hours Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

1.	a)	How do random errors differ from systematic errors?	[3]
	b)	Differentiate between electrical and mechanical transducer.	[3]
	c)	List out the advantages and disadvantages of DC tachometer.	[4]
	d)	Explain the principle of successive approximation DVM.	[4]
	e)	How is CRO superior to ordinary measuring instruments?	[4]
	f)	What is meant by spectrum analyzer? Why RF spectrum analyzers are more important than AF ones?	[4]
		$\underline{\mathbf{PART}}_{\mathbf{B}} (3x16 = 48 Marks)$	
2.	a)	Distinguish between static and dynamic characteristics of an instrument.	[8]
	b)	What are the main causes of environmental errors? Discuss the corrective	
		measures employed to eliminate these undesirable effects.	[8]
3.	a)	What is an electrical transducer? Discuss its primary role and therefore its	
		characteristics.	[8]
	b)	A strain gauge has a gauge factor of 4. If the strain gauge is attached to a metal	
		bar that stretches from 0.25 m to 0.255 m when strained. What is the percentage	
		change in resistance? If the unstrained value of gauge is 120 Ω . What is resistance value of gauge after application of strain?	[8]
		resistance value of gauge after appreadon of strain?	႞၀]
4.	a)	Derive the expression for gauge sensitivity of a strain gauge.	[8]
	b)	Explain the working of strain gauge type of torque transducer.	[8]
	- /		[~]
5.	a)	Describe with neat sketch, the working of digital phase angle meter.	[8]
	b)	A $3\frac{1}{2}$ digit voltmeter is used for measuring voltage (i) Find the resolution of the	
		instrument (ii) How would n voltage of 14.53 V be displayed on 10 V scale?	
		(iii) How would a reading of 14.53 V be displayed on 10 V scale?	[8]
		(iii) How would a reading of 14.55 V be displayed on 100 V seare:	[0]
6.	a)	Explain about the vertical amplifiers.	[8]
	b)	Discuss the advantages and disadvantages of analog and digital type of	
	,	oscilloscope.	[8]
		-	
7.	a)	Explain different methods used for measurement of unknown components using	
		Q-meter.	[8]
	b)	Explain about RMS voltmeter with neat diagram.	[8]

1 of 1

Code No: **RT41025**

R13

Set No. 2

IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017 **INSTRUMENTATION**

(Common to Electrical and Electronics Engineering and Mechanical Engineering) Time: 3 hours Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

1.	a)	Enumerate the factors that influence the accuracy of a system.	[3]
	b)	How does a piezoelectric transducer work? What are the common materials used	
		for it?	[4]
	c)	List out the advantages of strain gauge type torque transducer.	[3]
	d)	What is the difference between 3-digit and $3\frac{1}{2}$ digit digital meter?	[4]
	e)	What are the limitations of oscilloscope?	[4]
	f)	What is wave analyzer? How good frequency stability is achieved in a wave	
		analyzer?	[4]

PART B (3x16 - 18 Marks)

		$\mathbf{\underline{\mathbf{FAK1-D}}}(3x10 = 48 \text{ Marks})$	
2.	a)	What are the various errors in measurements? Explain these errors in brief by giving suitable examples. Discuss the means adopted to minimize these errors.	[12]
	b)	Explain the concept of pulse code modulation.	[4]
3.	a)	What is an LVDT? Explain its principle of working and discuss its merits and demerits.	[8]
	b)	A capacitive transducer of two parallel plates of overlapping area 6×10^{-4} m ² is immersed in water. The capacitance C has been found to be 10.5 pF. Determine	
		the separation between the plates and the sensitivity of the transducer in pF/m. Given ε_r for water =81; ε_0 =8.854×10 ⁻¹² F/m.	[8]
4.	a) b)	Explain with neat schematic the working of AC tachometer and its limitations. Describe with neat sketch, the working of electromagnetic flow meter. Explain	[8]
	0)	its advantages.	[8]
5.	a)	Explain with neat block diagram of integrating type digital voltmeter.	[8]
	b)	A $4\frac{1}{2}$ digital voltmeter is used for voltage measurement (i) Find its resolution	
		(ii) How would 12.98 V be displayed on 10 V range? (iii) How would 0.6973 be	
		displayed on 1 V range? (iv) How would 0.6973 be displayed on 10 V range?	[8]
6.	a)	Discuss about the horizontal amplifier with neat block diagram.	[8]
	b)	Explain about the transient recorder with neat schematic diagram.	[8]
7.	a)	With a neat block diagram, explain a heterodyne wave analyzer and its	
<i>,</i> .	,	applications.	[10]
	b)	What do you mean by harmonic distortion and explain any one method for measuring it.	[6]

1 of 1

Code No: **RT41025**

IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017 INSTRUMENTATION

(Common to Electrical and Electronics Engineering and Mechanical Engineering) Time: 3 hours Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

1.	 a) b) c) d) e) f) 	What is the difference between periodic and aperiodic signal? Explain how thermistor can be used for temperature measurement. What are the limitations of electromagnetic flow meter? What are the advantages of a digital voltmeter? Enlist the applications of CRO. How does a spectrum analyzer functionally differ from a wave analyzer?	[3] [3] [4] [4] [4] [4]
		PART–B $(3x16 = 48 Marks)$	
2.	a)	How do you classify the systematic errors? Explain with suitable examples.	
		Discuss the measures taken to minimize these errors.	[12]
	b)	Explain the concept of pulse modulation.	[4]
3.	a)	Why selection of a transducer is important? Give the points to be considered in	
		determining a transducer suitability for a specific measurement.	[8]
	b)	An LVDT is employed for measuring the deflection of a bellows. The sensitivity	
		of the LVDT is 60 V/mm. The bellows is deflected by 0.15 mm by a pressure of 1.2 ± 10^{6} N/ 2 D to 1.2 ± 10^{6} N/ 2 L the	
		1.2×10^6 N/m ² . Determine the sensitivity of the LVDT in V per N/m ² and the pressure when the output voltage is 4.5 V.	[8]
		pressure when the output voltage is 4.5 V.	[o]
4.	a)	What are the devices are used for the measurement of temperature? Explain any	
		one of them.	[9]
	b)	Explain the difference between velocity and angular velocity measurements.	
			[7]
5.	a)	Discuss the working of ramp type digital voltmeter with neat sketch. Also write	
5.	u)	its applications.	[8]
	b)	What is the resolution of a $4\frac{1}{2}$ digital display? How would 15.84 V be displayed	
		on a 10 V range and 0.5243 Von 1 V and 10 V ranges?	[8]
		on a to v range and 0.5215 von 1 v and 10 v ranges.	[0]
6.	a)	Describe how the following measurements can be made with the use of a CRO	
		(i) frequency (ii) phase angle	[10]
	b)	Explain the functioning of a time base generator in a CRO	[6]
7.	a)	Explain the working of wave analyzers used for audio frequency and megahertz	
	,	ranges.	[10]
	b)	Describe the engineering applications of wave analyzer.	[6]

1 of 1

www.FirstRanker.com

Code No: **RT41025**

R13

IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017

INSTRUMENTATION (Common to Electrical and Electronics Engineering and Mechanical Engineering) Time: 3 hours Max. Marks: 70 Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B ***** PART-A (22 Marks) Define (i) Speed of response (ii) Measuring lag (iii) Fidelity 1. a) [3] What are the basic requirements of a transducer operation? b) [3] List out the disadvantages of liquid level measurement by resistive method. [4] c) d) Enumerate the advantages of successive approximation DVM. [4] Determine the velocity of the electron beam in an oscilloscope when the voltage e) applied to its accelerating anode is 2000 V. [4] f) What is harmonic distortion? What do you understand by total harmonic distortion? [4] <u>**PART-B**</u> (3x16 = 48 Marks)Explain the following main static characteristics (i) Accuracy (ii) Sensitivity 2. a) (iii) Reproducibility (iv) Drift (v) Static error (vi) Dead zone [12] What are the three main reasons to arise the instrumental errors? b) [4] 3. a) State the requirements of a resistance strain gauge for its optimum working. Define gauge factor and derive its expression with usual notations [8] A platinum resistance thermometer has a resistance of 125 Ω at 20^oC. Determine b) its resistance at 80°C. The temperature coefficient of resistance of platinum at 20° C is 0.004 $\Omega/\Omega/^{\circ}$ C. If the resistance of the thermometer is found to be 210 Ω , determine the temperature. [8] What are the devices used for liquid level measurements? Explain any one 4. a) method. [8] Explain the pressure measurement using resistive transducers. [8] b) Draw and explain the circuit of a digital frequency meter. What are the different 5. a) methods used for high frequency determination? [10] b) Explain about the digital voltmeter with respect to analog voltmeter. [6] 6. a) Describe the basic circuitry of a typical cathode ray oscilloscope with neat block diagram. [10] What is a sampling oscilloscope? What are its various applications? [6] b) 7. a) Describe how phase angle measurements are carried out by using vector impedance meter. [14] b) What are the factors which affect the measurement accuracy of Q-meter? [2]