SET - 1

II B. Tech II Semester Supplementary Examinations, November-2017 KINEMATICS OF MACHINERY

(Com. to ME, AME, MM)
Time: 3 hours
Max. Marks: 75
Answer any FIVE Questions
All Questions carry Equal Marks

1. a) How many inversions will be obtained from a double slider crank chain and explain all inversions with sketches.
b) Explain mechanical advantage and transmission angle related to Four- bar mechanism.
2. Design a pantograph for an indicator to be used to obtain the indicator diagram of an engine. The distance between the fixed point and the tracing point is 160 mm . The indicator diagram should be four times. The gas pressure inside the cylinder of the engine.
3. Locate all instantaneous centers of the slider crank mechanism; the length of crank OB and Connecting rod AB are 125 mm and 500 mm respectively. The crank speed is 600 rpm clockwise. When the crank has turned 45° from the IDC. Determine (i) velocity of slider' A' (ii) Angular Velocity of connecting rod ' AB '.
4. Derive Davis Steering gear mechanism with neat sketch and mention why it is not preferred?
5. Draw the profile of a cam operating a roller reciprocating follower and with the following data:
Minimum radius of cam $=25 \mathrm{~mm}$; lift $=30 \mathrm{~mm}$; Roller diameter $=15 \mathrm{~mm}$. The cam lifts the follower for 120° with SHM, followed by a dwell period of 30°. Then the follower lowers down during 150° of cam rotation with uniform acceleration and retardation followed by a dwell period. If the cam rotates at a uniform sped of 150 RPM. Calculate the maximum velocity and acceleration of follower during the descent period.
6. Two shafts whose centers are 1 m apart are connected by a V belt drive. The driving pulley is supplied with 100 kW and has an effective diameter of 300 mm . It runs at 375 rpm . The angle of groove on the pulley is 40°. The permissible tension in $400 \mathrm{~mm}^{2}$ cross sectional area of the belt is 2.1 MPa . The density of the belt is $1100 \mathrm{~kg} / \mathrm{mm}^{3}$ coefficient of friction is 0.28 . Estimate number of belts required.
7. a) Define the following W.r.t gears:
i) pressure angle ii) contact ratio iii) pitch circle iv) module
b) Differentiate involute and cycloid tooth profile
8. In a reverted epicyclic train, the arm F carries two wheels A and D and a compound wheel B-C. Wheel A meshes with wheel B and Wheel D meshes with wheel C. Ther number of teeth on wheel A, D and C are 80,48 , and 72 . Find the speed and direction of wheel D, when wheel A is fixed and arm F makes 200 rpm clockwise.
