Code No: RT31042

SET - 1

III B. Tech I Semester Supplementary Examinations, May-2017
 LINEAR IC APPLICATIONS
 (Common to Electronics and Communication Engineering, Electronics and Instrumentation Engineering and Electronics and Computer Engineering)

Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is compulsory
3. Answer any THREE Questions from Part-B

PART-A

1 a) Draw and explain the circuit diagram of basic current mirror.
b) The input signal to an op-amp is $0.03 \sin \left(1.5 \times 10^{5} \mathrm{t}\right)$. What can be the maximum gain of an op-amp with the slew rate of $0.4 \mathrm{~V} / \mu \mathrm{s}$?
c) Explain how the average circuit can be derived from the summer.
d) What are the characteristics of all pass filters?
e) Describe the PPM using 555 timer mono stable multi vibrator.
f) The LSB of a $10=$ bit DAC is $20 \mathrm{mv} . c a l c u l a t e ~ t h e ~ o u t p u t ~ v o l t a g e ~ f o r ~ a n ~ i n p u t, ~$ 1011001101.

PART -B

2 For a Dual input balanced output differential amplifier $\mathrm{R}_{\mathrm{C}}=47 \mathrm{k} \Omega, \mathrm{RS}_{1}=\mathrm{RS}_{2}=20 \mathrm{k} \Omega$, $\mathrm{R}_{\mathrm{l}}=43 \mathrm{k} \Omega, \mathrm{h}_{\mathrm{fe}}=75, \mathrm{~h}_{\mathrm{ie}}=20 \mathrm{k}, \mathrm{V}_{\mathrm{cc}}=9 \mathrm{v}, \mathrm{V}_{\mathrm{EE}}=-9 \mathrm{v}$ and $\mathrm{V}_{\mathrm{BE}}=0.7 \mathrm{v}$ calculate i) operating point values ii) A_{d} iii) A_{c} iv)CMRR in dB

3 a) Discuss briefly about stability of an op-amp.
b) Explain about the concept of frequency compensation.

4 a) Derive the frequency response of a practical integrator.
b) Design a practical integrator circuit with a D.C gain of 20, to integrate a square wave of 25 kHz .

5 a) Explain the operation of Narrow band pass filter with a neat diagram.
b) Design a multiple feedback Narrow band pass filter with $\mathrm{f}_{\mathrm{c}}=1 \mathrm{kHz}, \mathrm{Q}=3$ \& $\mathrm{A}_{\mathrm{f}}=10$.

6 Describe the 555 timer monostable multivibrator applications in i) Frequency [16M] divider ii) Pulse width modulation.

7 a) With neat sketch explain the principle and operation of successive approximation ADC.
b) With neat sketch explain the operation of Dual slope ADC.

