

Subject Code: R13207/R13

Set No - 1

I B. Tech II Semester Supplementary Examinations April/May - 2017 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, Auto E, Min E, Pet E, Metal E, Textile Engg.)

Time: 3 hours Max. Marks: 70

> Question Paper Consists of Part-A and Part-B Answering the question in **Part-A** is Compulsory, Three Questions should be answered from Part-B

PART-A

- 1. (a) Write the working rule to find the root of the equation y = f(x) by False position method.
 - (b) Prove that $(1+\nabla)(1-\nabla)=1$
 - (c) By RK method of second order find y (0.3) given that $\frac{dy}{dx} = x y$, y(0) = 1
 - (d) Expand $f(x) = \begin{cases} x, 0 < x < \pi \\ 0, \pi < x < 2\pi \end{cases}$ as Fourier series.
 - (e) If $F_s(p)$ is Fourier sine transform of f(x). Then prove that

$$F_s[f(x)\cos ax] = \frac{1}{2}[F_s(p+a) + F_s(p-a)]$$

(f) Find $Z[a^n]$.

PART-B

- (a) Find the root of the equation x³-9x+1 = 0 by using Newton Raphson method.
 (b) Find the root of the equation xe^x = 1 by using bisection method.

[8+8]

3. (a) Find f(2.5) using Newton's forward formula for the following table

X	0	1	2	3	4	5	6
y=f(x)	0	1	16	81	256	625	1296

(b) Find the Lagrange's polynomial for the following data

X	0	2	3	6
у	648	704	729	792

[8+8]

- 4. (a) By modified Euler's method find y (0.2), y(0.4) given that $\frac{dy}{dx} = y^2 x$, y(0) = 1
 - (b) Obtain Picard's expansion for $\frac{dy}{dx} = x + y$, y(0) = 1, hence evaluate y (0.1).

[8+8]

- 5. (a) Find the half-range sine series for the function $f(x) = x^2$ in the range 0 < x < 2.
 - (b) Find the Fourier expansion for $f(x) = \sin x$ in $[0, \pi]$.

[8+8]

Subject Code: R13207/R13

Set No - 1

- 6. (a) Find the Fourier transform of f(x) defined by $f(x) = 1 x^2 1 < x < 1$
 - (b) Find the Fourier cosine transform of e^{-ax} , a > 0 and hence deduce the inversion formula $\int_{a}^{\infty} \frac{\cos px}{a^2 + p^2} dp$

[8+8]

- 7. (a) Find the inverse Z transform of $\left[\frac{z}{z^2 + 11z + 24}\right]$
 - (b) Using Z transforms, solve $y_{n+2} 6 y_{n+1} + 9 y_n = 3^n$ with $y_0 = 0$ and $y_1 = 1$.

[8+8]

MANN FILST PAINTER COM

Page 2 of 2