Subject Code: RA13207/R13 [Re Admitted]

Set No - 1

Max. Marks: 70

I B. Tech II Semester Regular/Supplementary Examinations April/May - 2017 MATHEMATICS-II (MM)

(Computer Science and Engineering)

Time: 3 hours

Question Paper Consists of **Part-A** and **Part-B**Answering the question in **Part-A** is Compulsory,
Three Questions should be answered from **Part-B*******

PART-A

1. a) Write the working rule to find the root of the equation y = f(x) by bisection method.

b) Prove that $\Delta \log f(x) = \log \left[1 + \frac{\Delta f(x)}{f(x)} \right]$

c) By Picard's method find y(0.1) given that $\frac{dy}{dx} = x^2y - 1$, y(0) = 1

d) Find Half range sine series for f(x) = 1-ax in [0,1].

e) If F(p), is Fourier transform of f(x), then prove that the Fourier transform of f(x - a) is e^{ipa} F(p).

f) Find $Z[sinn\theta]$.

[3+3+4+4+4]

PART-B

2. a) Find the root of the equation $3x = 1 + \cos x$ by False position method.

b) Find the root of the equation x^2 -8x-4=0 by Newton Raphson method.

(8+8)

(8+8)

3. a) Find f(6.5) using Newton's Backward formula for the following table:

X	0	1	2	3	4	5	6
y = f(x)	0	1	16	81	256	625	1296

b) Find the Lagrange's polynomial for the following data:

 x
 0
 1
 2
 4

 y
 3
 6
 10
 14

4. a) By RK method of fourth order find y (0.2), y(0.4) given that $\frac{dy}{dx} = y^2 + x$, y(0) = 1

b) Obtain Taylor's series expansion for $\frac{dy}{dx} = x^2y - 1$, y(0) = 1, hence evaluate y (0.1). (8+8)

5. a) Find the half-range cosine for the function $f(x) = \sin x$ in the range $0 < x < \pi$.

b) Find Fourier expansion for $f(x) = x+x^2 -1 < x < 1$. (8+8)

6. a) Find the Fourier transform of f(x) defined by $e^{-\frac{x^2}{2}}$

b) Find the Fourier sine transform of $f(x) = \frac{x}{\pi}$, $0 < x < \pi$. (8+8)

7. a) Solve the difference equation $y_{n+2} - 7y_{n+1} - 8y_n = 2^n$, $y_0 = y_1 = 0$ using z transform.

b) Evaluate
$$Z^{-1} \left[\frac{z}{(z^2 + 6z + 8)} \right]$$
 (8+8)