

III B. Tech II Semester Regular/Supplementary Examinations, April - 2017 MICROWAVE ENGINEERING

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

- 2. Answering the question in Part-A is compulsory
- 3. Answer any **THREE** Questions from **Part-B**

<u>PART –A</u>

1	a)	Derive the expression for cutoff frequency in a rectangular waveguide.	[3M]
	b)	Explain about dominant and degenerate modes in circular waveguide.	[4M]
	c) d) e) f)	Explain about the significance and properties of scattering matrix. Derive expression for output power in a Two-cavity klystron? Explain the types of slow wave structures in TWT. List out the different components used in a microwave bench. <u>PART -B</u>	[4M] [4M] [4M] [3M]
2	a)	Derive the field expression for TE & TM modes in rectangular waveguide?	[12M]
	b)	Briefly explain the applications of microwave signal.	[4M]
3	a)	Explain about the effective dielectric constants, losses & Q-factor of microstrip lines?	[8M]
	b)	Explain in detail about rectangular and circular cavity resonator?	[8M]
4	a)	Explain the operation of magic tee with neat diagram and derive it's S- matrix?	[6M]
	b)	Explain in detail about waveguide irises, tuning screws and posts, waveguide attenuators with neat diagram?	[10 M]
5	a)	Derive the expression for bunching process, output power and efficiency of reflex klystron?	[8M]
	b)	Explain the limitations and losses of convential tubes at microwave frequencies?	[8M]
6	a)	Explain how oscillations are suppresed in TWT?	[5M]
	b)	Explain the nature of four propagation constants?	[5M]
	c)	Explain the operation of 8-cavity cylindrical travelling wave magnetron and derive it's hull cutoff voltage?	[6M]
7	a) b) c)	Explain RWH- theory in GUNN diode? Explain various modes of operation in GUNN diode? Explain different methods of measuring VSWR and explain any one method with neat diagrams.	[5M] [5M] [6M]

III B. Tech II Semester Regular/Supplementary Examinations, April - 2017 MICROWAVE ENGINEERING

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the question in **Part-A** is compulsory

3. Answer any **THREE** Questions from **Part-B**

PART -A

1	a)	Derive the expressions for phase and group velocities in a rectangular waveguide?	[4M]
	b)	Explain about effective dielectric constants in micro strip line.	[3M]
	c)	Derive S-matrix of an E-plane Tee?	[4M]
	d)	Explain in detail about electronic and mechanical tuning?	[4M]
	e)	Explain about a characteristics of slow wave stracture?	[4M]
	f)	Explain about the classifications and applications of microwave solid state devices?	[3M]
		<u>PART-B</u>	
2	a)	Explain about the Power transmission and power losses in rectangular waveguide?	[5M]
	b)	Explain why the propagation of TEM mode is impossible in wave guides?	[5M]
	c)	Derive the expression for various fields in rectangular guides?	[6M]
3	a)	Explain about the dominant modes and derive expressions for resonant frequency in a cylindrical cavity resonator?	[8M]
	b)	Explain the different excitations techniques used in rectangular and circular wave guides.	[8M]
4	a)	Explain different types of directional couplers with neat sketches and derive the S- matrix for directional coupler?	[8M]
	b)	Explain the operation of Four-port circulator with suitable diagrams?	[8M]
5	a)	Derive the expression for bunching process, output power and efficiency of Two- cavity klystron?	[8M]
	b)	Explain the bunching process in reflex klystron oscillator round trip.	[8M]
6	a)	Explain about modes of operation and PI-mode in magnetrons?	[6M]
	b)	Explain about different types of magnetrons.	[4M]
	c)	Explain the operation of TWT with neat sketches.	[6M]
7	a)	Explain the operation, basic modes of operation and oscillating modes in a GUNN diode?	[8M]
	b)	Explain different methods of measurement of impedance using microwave bench?	[8M]

III B. Tech II Semester Regular/Supplementary Examinations, April - 2017 MICROWAVE ENGINEERING

(Electronics and Communication Engineering)

Time: 3 hours

1

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the question in Part-A is compulsory

3. Answer any **THREE** Questions from **Part-B**

PART –A

a)	Explain the applications of microwaves in detail?	[3M]
b)	Derive the expression for cutoff frequency in a circular waveguides.	[4M]
c)	Explain about the waveguide phase shifters?	[3M]
d)	Differentiate between 2-cavity klystron and reflex klystron?	[4M]
e)	What are the advantages of magnetrons over TWT?	[4M]
f)	Explain the operation of TRAPATT diode with suitable diagram?	[4M]

PART -B

2	a)	Analyze, derive and draw the fields for TE and TM modes in a rectangular waveguide.	[10M]
)		L 1

- b) A rectangular waveguide with dimensions a=4cm and b=1cm operates in TE_{10} mode at [6M] 10GHZ. The waveguide is perfectly matched and maximum E field existing everywhere in the guide is 10^3 V/m. Determine the wave impedance and maximum average power that can be carried by the guide?
- 3 a) Explain about dominant and degenerate modes in circular waveguide and derive the [8M] expressions for TE wave.
 - b) A TE₁₁ mode is propagating through a circular waveguide, the diameter of the guide [8M] is 10cm and the guide is air-filled, relative di-electric constant is $\epsilon_n = 4$. Find :

a) cut-off frequencyb) wavelength in the guide for a frequency of 3 GHzc) wave impedance of the guided) mode diameter for a di-electric filled guide

- 4 a) Derive the expressions for Directivity, Coupling factor and S-matrix for a directional [8M] coupler.
 - b) Derive the S-parameters for 10dB directional coupler, Directivity D=30dB. Assume [8M] that it is lossless and VSWR at each port is 1.0 under matched conditions. Designate the ports in main guide as 1 and 2, in the auxiliary guide as 3 and 4.
- 5 a) Explain the operation of Reflex klystron with neat sketches and derive it's output [8M] power and efficiency?
 - b) A reflex klystron operates under the following conditions [8M] $V_0=500V$, $R_{sh}=30K\Omega$, $f_r=8$ GHz, L=1mm is the spacing between repeller and cavity. The tube is oscillating at f_r at peak n =2 mode. Transit time across the gap and beam loading is neglected. Find a) the repeller voltage V_R b) find the d.c necessary to give the microwave gap of voltage 200V c) Efficiency?

1 of 2

R13

6	a) b) c)	 Explain the operation of 8-cavity magnetron? Explain modes of resonance and pi-mode in magnetron? A normal cylindrical magnetron has inner radius R_=0.15m outer radius 	
	-)	$R_0 = 0.45$ m. magnetic flux density $\beta_0 = 1.2 m$ Wb/.m ² Determine a) Hull Cut-off voltage, b) cyclotron frequency in GHz?	[6M]
7	a) b)	Explain the principle of operation and characteristics of IMPATT diode. Explain the process of Frequency measurement using microwave bench?	[8M] [8M]

FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

Code No: RT32044

SET - 4

III B. Tech II Semester Regular/Supplementary Examinations, April - 2017 MICROWAVE ENGINEERING

(Electronics and Communication Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)

2. Answering the question in Part-A is compulsory

3. Answer any THREE Questions from Part-B

		PART –A	
1	a)	Explain about the filter characteristics in a rectangular waveguides.	[4M]
	b)	Explain the construction of micro strip line and working.	[4M]
	c)	Explain about the Hybrid rings in detail.	[3M]
	d)	What are the special characteristics of reflex klystron compared to 2-cavity klystron?	[3M]
	e)	Derive the expression for Hull cut-off voltage in magnetrons.	[4M]
	f)	Explain the importance of negative resistance region in Gunn diode with neat waveforms.	[4M]
		PART -B	
2	a)	Explain and derive the expressions for dominant and degenerate modes in a rectangular waveguides.	[10M]
	b)	A rectangular waveguide is designed to propagate the dominant mode TE_{10} at a frequency of 5 GHz. Cut-off frequency is 0.8 of the signal frequency. The ratio of guide height to width is 2. The time-average power flowing through the guide is 1KW. Determine the magnitudes of Electric and Magnetic intensities in the guide and indicate where these will occur in the guide?	[6M]
3	a) b)	Explain and derive the expressions for Z_0 relations in a circular waveguides. Derive the expressions for Q- factor and coupling co-efficients in cylindrical cavity resonators?	[8M] [8M]
4	a)	What is the significance of S-matrix? Derive S-matrix for H-plane Tee?	[8M]
	b)	Explain the operation of Gyrator and isolator.	[8M]
5	a)	Explain about the structure, re-entrant cavities and velocity modulation process in a 2-cavity klystron?	[8M]
	b)	A 2-cavity klystron is operated at 10GHZ with $V_0=1200V, I_0=30$ mA, d=1mm, L=4cm, $R_{sh}=40$ K Ω , neglecting the beam loading. Calculate a) input RF voltage V ₀ for maximum output voltage, b) voltage gain, c)	[8M]
		Efficiency.	
6	a)	Explain about the modes of resonance, pi-mode operation and seperation of pi-mode in magnetrons.	[8M]
	b)	An X-band pulsed cylindrical magnetron has $V_0=30$ KV, $I_0=80$ A, $B_0=0.01$ Wb/Sq.m, a=4cm, b=8cm. Calculate a) cyclotron angular frequency b) Cut-off voltage c) Cut-off magnetic flux density?	[8M]
7	a)	What are Avalanche transit time devices? Explain the principle of operation and characteristics of IMPATT diode with neat sketches?	[6M]
	b)	Explain Bolometer method for power measurement using microwave bench.	[4M]
	c)	Explain the procedure for measurement of cavity O.	[6M]
