

Code No: R161202

SET - 1

I B. Tech II Semester Regular Examinations, April/May - 2017 MATHEMATICS-II (MM)

(Com. to CE, EEE, ME, CHEM, AE, BIO, AME, MM, PE, PCE, MET)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A

1.	a)	Explain the Bisection method.	(2M)
	b)	Prove that $\Delta = E - 1$.	(2M)
	c)	Write Newton's forward interpolation formula.	(2M)
	d)	Write Trapezoidal rule and Simpson's 3/8 th rule.	(2M)
	e)	Write the Fourier series for $f(x)$ in the interval $(0, 2\pi)$.	(2M)
	f)	Write One dimensional wave equation with boundary and initial conditions.	(2M)
	g)	If $F(s)$ is the complex Fourier transform of $f(x)$, then prove that	(2M)

$$F\left\{f\left(ax\right)\right\} = \frac{1}{a}F\left(\frac{s}{a}\right).$$

2. a) Using bisection method, obtain an approximate root of the equation $x^3 - x - 1 = 0$. (7M)

<u>PART –B</u>

- b) Develop an Iterative formula to find the square root of a positive number *N* using (7M) Newton-Raphson method.
- 3. a) Evaluate $\Delta^2 (\tan^{-1} x)$. (6M)
 - b) Using Newton's forward formula, find the value of f(1.6), if (8M)

x	1	1.4	1.8	2.2
f(x)	3.49	4.82	5.96	6.5

4. a) Compute the value of
$$\int_{0.2}^{1.4} (\sin x - \log x + e^x) dx$$
 using Simpson's $\frac{3}{8}$ th rule. (7M)

b) Using the fourth order Runge – Kutta formula, find y(0.2) and y(0.4) given that (7M) $\frac{dy}{dx} = \frac{y^2 - x^2}{y^2 + x^2}, y(0) = 1.$

5. a) Find a Fourier series to represent $f(x) = x - x^2$ in $-\pi \le x \le \pi$. Hence show that (7M)

- $\frac{1}{1^2} \frac{1}{2^2} + \frac{1}{3^2} \frac{1}{4^2} + \cdots = \frac{\pi^2}{12}.$
- b) Obtain the half range sine series for $f(x)=e^x$ in 0 < x < 1. (7M)
- 6. a) Solve by the method of separation of variables $4u_x + u_y = 3u \text{ and } u(0, y) = e^{-5y}.$ (7M)

b) A tightly stretched string with fixed end points x = 0 and x = L is initially in a (7M) position given by $y = y_0 \sin^3\left(\frac{\pi x}{L}\right)$ if it is released from rest from this position, find the displacement y(x,t).

7. a) Express the function $f(x) = \begin{cases} 1 & \text{for } |x| \le 1 \\ 0 & \text{for } |x| \ge 1 \end{cases}$ as a Fourier integral. Hence (7M)

evaluate
$$\int_{0}^{\infty} \frac{\sin \lambda \, \cos \lambda \, x}{\lambda} d\lambda.$$

b) Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & \text{for } |x| \le 1 \\ 0 & \text{for } |x| > 1 \end{cases}$ hence evaluate (7M)

 $\int_{0}^{\infty} \left(\frac{x\cos x - \sin x}{x^3}\right) \cos \frac{x}{2} \, dx \, .$

Code No: R161202

SET - 2

I B. Tech II Semester Regular Examinations, April/May - 2017 MATHEMATICS-II (MM)

(Com. to CE, EEE, ME, CHEM, AE, BIO, AME, MM, PE, PCE, MET)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**)

2. Answer ALL the question in Part-A

3. Answer any FOUR Questions from Part-B

PART -A

1.	a)	Explain the Method of false position.	(2M)				
	b)	b) Prove that $\nabla = 1 - E^{-1}$.					
	c)	c) Write Newton's backward interpolation formula.					
	d)	d) Write Simpson's 1/3 rd and 3/8 th rule.					
	e) Write the Fourier series for $f(x)$ in the interval $(0, 2L)$.						
	f)	Write the suitable solution of one dimensional wave equation.	(2M)				
	g)	If $F(s)$ is the complex Fourier transform of $f(x)$, then prove that	(2M)				
		$F\left\{f\left(x-a\right)\right\} = e^{i a s} F\left(s\right).$					
		PARTB					
2.	a)	Using bisection method, compute the real root of the equation $x^3 - 4x + 1 = 0$.	(7M)				
	b) Develop an Iterative formula to find the cube root of a positive number N usin						
	Newton-Raphson method.						
3.	a) Evaluate $\Delta (e^x \log 2x)$.						
	b) Using Newton's forward formula compute $f(142)$ from the following table:						
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						
		f(x) 3.685 4.854 6.302 8.076 10.225					
		$r = 1$ r^2 r^2 $r = 1$ r^2 $r = 1$ r^2 $r = 1$ r^2 $r = 1$					
4.	a)	Evaluate, $\int_{0}^{2} e^{-x^{2}} dx$ by using Trapezoidal rule and Simpson's $\frac{1}{3}$ rd rule taking	(7M)				
		h = 0.25.					
	b)	Find the value of $y at x = 0.1$ by Picard's method, given that	(7M)				
		dy y = r					

$$\frac{dy}{dx} = \frac{y - x}{y + x}, \quad y(0) = 1$$

1 of 2

www.FirstRanker.com

FirstRanker.com

5. a) Given that
$$f(x) = \begin{cases} -\pi, -\pi < x < 0 \\ x, 0 < x < \pi \end{cases}$$
. Find the Fourier series for $f(x)$. (7M)

Also deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$. b) Express f(x) = x as a half-range cosine series in 0 < x < 2. (7M)

- 6. a) Solve by the method of separation of variables (7M) $\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u, \text{ given } u(x,0) = 6e^{-3x}.$
 - b) A string of length *L* is initially at rest in equilibrium position and each of its points (7M) is given the velocity $\left(\frac{\partial y}{\partial t}\right)_{t=0} = b \sin^3\left(\frac{\pi x}{L}\right)$. Find displacement y(x,t).

7. a) Express
$$f(x) = \begin{cases} 1 & \text{for } 0 \le x \le \pi \\ 0 & \text{for } x > \pi \end{cases}$$
 as a Fourier sine integral and hence evaluate (7M)
$$\int_{0}^{\infty} \frac{1 - \cos(\pi \lambda)}{\lambda} \sin(x\lambda) \, d\lambda \,.$$
b) Find the Fourier sine and cosine transform of $f(x) = e^{-ax}, a > 0, x > 0$.

2 of 2

Code No: R161202

SET - 3

I B. Tech II Semester Regular Examinations, April/May - 2017 MATHEMATICS-II (MM) (Com. to CE, EEE, ME, CHEM, AE, BIO, AME, MM, PE, PCE, MET)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**) 2. Answer **ALL** the question in **Part-A** 3. Answer any **FOUR** Questions from **Part-B**

PART -A

1.	a)	Explain the Newton-Raphson method.	(2M)
	b)	Prove that $\delta = E^{1/2} - E^{-1/2}$.	(2M)
	c)	Write Lagrange's interpolation formula for unequal intervals.	(2M)
	d)	Explain Taylor's series method for solving IVP $\frac{dy}{dx} = f(x, y)$ with $y(x_0) = y_0$.	(2M)
	e)	Write the Fourier series for $f(x)$ in the interval $(-\pi, \pi)$.	(2M)
	f)	Write the suitable solution of one dimensional heat equation.	(2M)
	g)	If $F(s)$ is the complex Fourier transform of $f(x)$, then prove that	(2M)
		$F\left\{ f(x)\cos ax \right\} = \frac{1}{2} \left[F(s+a) + F(s-a) \right].$	
		PART -B	
•			
2.		Using Regula-Falsi method, compute the real root of the equation $x^3 - 4x - 9 = 0$.	(7M)
	b)	Develop an Iterative formula to find $\frac{1}{N}$. Using Newton-Raphson method.	(7M)
		$\left(-r^{2}\right)$	
3.	a)	Evaluate $\Delta \left(\frac{x^2}{\cos 2x} \right)$.	(6M)
	b)	Compute $f(27)$ Using Lagrange's formula from the following table:	(8M)
		x 14 17 31 35	

x	14	17	31	35
f(x)	68.7	64.0	44.0	39.1

 $1 \ of \ 2$

.com www.FirstRanker.com

4. a) Evaluate
$$\int_{0}^{0.6} e^{-x^2} dx$$
 by using Simpson's $\frac{1}{3}$ rd rule taking seven ordinates. (7M)

- b) Given that $\frac{dy}{dx} = 2 + \sqrt{xy}$, y(1) = 1. (7M)
 - Find y(2) in steps of **0.2** using the Euler's method.
- 5. a) Find the Fourier series for the function $f(x) =\begin{cases} x & , \ 0 \le x \le \pi \\ 2\pi x & , \ \pi \le x \le 2\pi \end{cases}$ (7M) Also deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$.
 - b) Obtain the Fourier expansion of $f(x) = x \sin x$ as a cosine series in $(0, \pi)$. (7M)
- 6. Solve the Laplace's equation $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$ in a rectangle in the *xy*-plane, (14M) $0 \le x \le a \text{ and } 0 \le y \le b$ satisfying the following boundary condition u(0, y) = 0, u(a, y) = 0, u(x, b) = 0 and u(x, 0) = f(x).
- 7. a) Find the Fourier sine transform of the function (7M) $f(x) = \begin{cases} x & , 0 < x < 1 \\ 2 - x & , 1 < x < 2 \\ 0 & , x > 2 \end{cases}$
 - b) Find the Fourier cosine integral and Fourier sine integral of $f(x) = e^{-kx}, k > 0$. (7M)

(R16)

I B. Tech II Semester Regular Examinations, April/May - 2017 MATHEMATICS-II (MM)

(Com. to CE, EEE, ME, CHEM, AE, BIO, AME, MM, PE, PCE, MET)

Time: 3 hours

Code No: R161202

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A

1.	a)	Explain Iteration method.	(2M)
	b)	Prove that $\mu = \frac{1}{2} (E^{1/2} + E^{-1/2}).$	(2M)
	c)	Prove that $\Delta^3 y_2 = \nabla^3 y_5$.	(2M)
	d)	Explain Runge-Kutta method of fourth order for solving IVP	(2M)
		$\frac{dy}{dx} = f(x, y) with y(x_0) = y_0.$	
	e)	Write the Fourier series for $f(x)$ in the interval $(-L, L)$.	(2M)

- f) Write the various possible solutions of two-dimensional Laplace equation.(2M)
- g) If F(s) and G(s) are the complex Fourier transform of f(x) and g(x), then (2M) prove that $F\left\{a f(x)+b g(x)\right\}=a F(s)+b G(s)$.

- 2. a) Find a positive real root of the equation $x^4 x 10 = 0$ using Newton-Raphson's (7M) method.
 - b) Explain the bisection method.

- (7M)
- 3. a) Evaluate $\Delta^2(\cos 2x)$. (6M)
 - b) Using Newton's backward formula compute f(84) from the following table: (8M)

х	c	40	50	60	70	80	90
f(<i>x</i>)	184	204	226	250	276	304

FirstRanker.com www.FirstRanker.com

4. a) Evaluate
$$\int_{0}^{1} e^{-x^2} dx$$
 by using Trapezoidal rule with $n = 10$. (7M)

b) Obtain Picard's second approximate solution of the initial value problem (7M) $\frac{dy}{dx} = \frac{x^2}{y^2 + 1}$, y(0) = 0.

5. a) Obtain the Fourier series
$$f(x) = \left(\frac{\pi - x}{2}\right)^2$$
 in the interval $0 < x < 2\pi$. Deduce that (8M)
$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \cdots = \frac{\pi^2}{6}.$$

b) Express
$$f(x) = x$$
 as a half-range cosine series in $0 < x < 2$. (6M)

6. a) Solve by the method of separation of variables (7M)

$$\frac{\partial u}{\partial x} = 4 \frac{\partial u}{\partial y} \quad and \quad u(0, y) = 8e^{-3y}.$$
(7M)

b) Solve the Laplace's equation $\frac{\partial u}{\partial x^2} + \frac{\partial u}{\partial y^2} = 0$ in a rectangle in the xy-plane, $0 \le x \le a$ and $0 \le y \le b$ satisfying the following boundary condition u(x,0) = 0, u(x,b) = 0, u(0, y) = 0 and u(a, y) = f(y).

- 7. a) Find the Fourier cosine integral and Fourier sine integral of (7M) $f(x) = e^{-ax} - e^{-bx}$, a > 0, b > 0. b) Find the Fourier transform of $e^{-a^2x^2}$, a > 0. Hence deduce that $e^{-\frac{x^2}{2}}$ is self
 - (7M) reciprocal in respect of Fourier transform.