I B. Tech II Semester Regular Examinations, April/May - 2017 MATHEMATICS-III

(Com. to CE, EEE, ME, ECE, CSE, CHEM, EIE, IT, ECC, AE, AME, MM, PE, PCE, MET, AGE)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is Compulsory
3. Answer any FOUR Questions from Part-B

PART - A

1. a) Find the rank of a matrix $A=\left[\begin{array}{cccc}-1 & 2 & 1 & 8 \\ 2 & 1 & -1 & 0 \\ 3 & 2 & 1 & 7\end{array}\right]$
b) Prove that if λ is an eigen value of a matrix A then λ^{-1} is an eigen value of the matrix A^{-1} if it exists.
c) Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{\sqrt{x^{2}+y^{2}}}^{y} x y z d z d y d x$.
d) Find the value of $\Gamma\left(\frac{5}{2}\right)$.
e) Find the angle between the surface $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at (2, $-1,2$).
f) If $\bar{F}=\left(5 x y-6 x^{2}\right) \bar{\imath}+(2 y-4 x) \bar{\jmath}$ then eyaluate $\int \bar{F} \cdot \overline{d R}$ along the curve $y=x^{3}$ from the point $(1,1)$ to $(2,8)$.
g) Write the quadratic form corresponding to the symmetric matrix
$\left[\begin{array}{ccc}1 & 0 & 4 \\ 0 & -2 & -1 \\ 4 & -1 & 3\end{array}\right]$

PART -B

2. a) Solve the system of equations $20 x+y-2 z=17,3 x+20 y-z=-18,2 x-$ $3 y+20 z=25$ by Gauss Jacobi method.
b) Find the currents in the following circuit

3. a) Verify Cayley-Hamilton theorem and find the inverse of the matrix

$$
A=\left[\begin{array}{ccc}
1 & 0 & 3 \tag{7M}\\
2 & 1 & -1 \\
1 & -1 & 1
\end{array}\right]
$$

b) Reduce the quadratic form $2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 y z-2 z x$ to canonical form by orthogonal transformation and hence find rank, index, signature and nature of the quadratic form.
4. a) Trace the curve $r^{2}=a^{2} \cos 2 \theta$.
b) Evaluate $\int_{0}^{a} \int_{\frac{x^{2}}{a}}^{2 a-x} x y^{2} d y d x$ by changing the order of integration.
5. a) Express $\int_{0}^{1} x^{m}\left(1-x^{n}\right)^{p} d x$ in terms of Γ functions and hence evaluate $\int_{0}^{1} x^{5}\left(1-x^{3}\right)^{10} d x$.
b) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{5} \theta \cos ^{7} \theta d \theta$ by using β, Γ functions.
c) Express $\int_{0}^{4} \sqrt{x}(4-x)^{\frac{3}{2}} d x$ in terms of β function.
6. a) Show that the vector field $\bar{F}=\left(x^{2}-y z\right) \bar{\imath}+\left(y^{2}-z x\right) \bar{\jmath}+\left(z^{2}-x y\right) \bar{k}$ is conservative and find the scalar potential function corresponding to it.
b) Show that $\nabla .(\bar{F} \times \bar{G})=\bar{G} .(\nabla \times \bar{F})-\bar{F} .(\nabla \times \bar{G})$
7. State Stoke's theorem and verify the theorem for $\bar{F}=(x+y) \bar{\imath}+(y+z) \bar{\jmath}-x \bar{k}$ and S is the surface of the plane $2 x+y+z=2$, which is in the first octant.

SET - 2

I B. Tech II Semester Regular Examinations, April/May - 2017 MATHEMATICS-III

(Com. to CE, EEE, ME, ECE, CSE, CHEM, EIE, IT, ECC, AE, AME, MM, PE, PCE, MET, AGE)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is Compulsory
3. Answer any FOUR Questions from Part-B

PART-A

1. a) Determine the rank of a matrix $A=\left[\begin{array}{cccc}2 & -1 & 3 & 4 \\ 0 & 3 & 4 & 1 \\ 2 & 3 & 7 & 5 \\ 2 & 5 & 11 & 6\end{array}\right]$.
b) Use Cayley-Hamilton theorem to find A^{8} if $A=\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]$.
c) Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{y} x y z d x d y d z$.
d) Find the value of $\Gamma\left(-\frac{5}{2}\right)$.
e) Find unit normal vector to the surface $x^{2} y+2 x z^{2}=8$ at the point $(1,0,2)$.
f) If $\bar{F}=\left(3 x^{2}+6 y\right) \bar{\imath}-14 y z \bar{\jmath}+20 x z \bar{k}$ then evaluate $\int \bar{F} \cdot \overline{d R}$ from $(0,0,0)$ to $(1,1,1)$ along the path $x=t, y=t^{2}, z=t^{3}$.
g) Write the quadratic form corresponding to the symmetric matrix
$\left[\begin{array}{ccc}0 & 5 / 2 & 3 \\ 5 / 2 & 7 & 1 \\ 3 & 1 & 2\end{array}\right]$

PART -B

2. a) Show that the system of equations is consistent
b) Find the currents in the following circuit

3. a) Reduce the quadratic form $6 x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}-4 x_{1} x_{2}-2 x_{2} x_{3}+4 x_{1} x_{3}$ to canonical form and hence state nature, rank, index and signature of the quadratic form.
b) Determine the natural frequencies and normal modes of a vibrating system for (7 M) which mass $m=\left[\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right]$ and stiffness $k=\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]$.
4. a) Trace the curve $y^{2}(2 a-x)=x^{3}$.
b) Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$ by changing in to polar coordinates and hence deduce $\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2}$.
5. a) Show that $\beta(m, n)=\frac{\Gamma(m) \Gamma(n)}{\Gamma(m+n)}$.
b) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{4} \theta \cos ^{2} \theta d \theta$ by using β, Γ functions.
c) Express $\int_{0}^{1} \frac{1}{\left(1-x^{3}\right)^{1 / 3}} d x$ in terms of β function.
6. a) Show that the vector field $\bar{F}=\left(x^{2}+x y^{2}\right) \bar{\imath}+\left(y^{2}+x^{2} y\right) \bar{J}$ is conservative and find the scalar potential function.
b) Show that $\nabla(\nabla . \bar{F})=\nabla \times(\nabla \times \bar{F})+\nabla^{2} \bar{F}$.
7. State Greens theorem in plane and verify the theorem for $\oint_{C}[(y-\sin x) d x+$ $\cos x d y]$, where C is the plane triangle formed by the lines $y=0, x=\frac{\pi}{2}$, $y=\frac{2}{\pi} x$.

I B. Tech II Semester Regular Examinations, April/May - 2017 MATHEMATICS-III

(Com. to CE, EEE, ME, ECE, CSE, CHEM, EIE, IT, ECC, AE, AME, MM, PE, PCE, MET, AGE)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is Compulsory
3. Answer any FOUR Questions from Part-B

PART -A

1. a) Determine the rank of a matrix $A=\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5\end{array}\right]$.
b) Use Cayley-Hamilton theorem and find A^{-1} if $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$.
c) Evaluate $\int_{0}^{\frac{\pi}{2}} \int_{0}^{a \sin \theta} \int_{0}^{\frac{\left(a^{2}-r^{2}\right)}{a}} r d z d r d \theta$.
d) Show that $\beta\left(\frac{1}{2}, \frac{1}{2}\right)=\pi$.
e) Find directional derivative of $\phi=x y^{2}+y z^{2}$ at the point $(2,-1,1)$ in the direction of the vector $\bar{\imath}+2 \bar{\jmath}+2 \bar{k}$.
f) If $\bar{F}=\left(x^{2}-y\right) \bar{\imath}+(2 x z-y) \bar{\jmath}+z^{2} \bar{k}$ then evaluate $\int \bar{F} \cdot \overline{d R}$ where C is the straight line joining the points $(0,0,0)$ to $(1,2,4)$.
g) Write the quadratic form corresponding to the symmetric matrix
$\left[\begin{array}{lll}3 & 5 & 0 \\ 5 & 5 & 4 \\ 0 & 4 & 7\end{array}\right]$.

PART -B

2. a) Solve the system of equations $10 x+y+z=12,2 x+10 y+z=13,2 x+$ $2 y+10 z=14$ by Gauss Seidel method.
b) Find the currents in the following circuit

3. a) Reduce the quadratic form $3 x^{2}+5 y^{2}+3 z^{2}-2 x y-2 y z+2 z x$ to canonical form by orthogonal transformation and hence find the rank, index signature and nature of the quadratic form.
b) Find the natural frequencies and normal modes of a vibrating system
$m x^{\prime \prime}+k x=0$ for mass $m=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$ and stiffness $k=\left[\begin{array}{cc}9 & -3 \\ -3 & 3\end{array}\right]$.
4. a) Trace the curve $a^{2} y^{2}=x^{2}\left(a^{2}-x^{2}\right)$.
b) Evaluate $\int_{0}^{1} \int_{\sqrt{y}}^{2-y} x y d x d y$ by changing the order of integration.
5. a) Show that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.
b) Evaluate $\int_{0}^{\frac{\pi}{2}} \sin ^{5} \theta d \theta$ by using β, Γ functions.
c) Express $\int_{0}^{1} \frac{x d x}{\sqrt{1+x^{4}}}$ in terms of β function.
6. a) Find the constants a, b such that the surfaces $5 x^{2}-2 y z-9 x=0$ and $a x^{2} y+$ $b z^{3}=4$ cut orthogonally at $(1,-1,2)$.
b) Show that $\nabla \times(\nabla \times \bar{F})=\nabla(\nabla \cdot \bar{F})-\nabla^{2} \bar{F}$.
7. State Gauss divergence theorem in plane and verify the theorem for $\bar{F}=4 x z \bar{\imath}-$ $y^{2} \bar{J}+z y \bar{k}$ over the cube $x=0, x=1, y=0, y=1, z=0, z=1$.

I B. Tech II Semester Regular Examinations, April/May - 2017 MATHEMATICS-III

(Com. to CE, EEE, ME, ECE, CSE, CHEM, EIE, IT, ECC, AE, AME, MM, PE, PCE, MET, AGE)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answering the question in Part-A is Compulsory
3. Answer any FOUR Questions from Part-B

PART -A

1. a) Find inverse of the matrix $A=\left[\begin{array}{ccc}1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4\end{array}\right]$ by elementary operations.
b) Prove that if λ is an eigen value of a matrix A then $\frac{|A|}{\lambda}$ is an eigen value of adjA.
c) Evaluate $\int_{0}^{1} \int_{y^{2}}^{1} \int_{0}^{1-x} x d z d x d y$.
d) Determine the value of $\beta(2,3)$.
e) Show that $\nabla f g=f \nabla g+g \nabla f$.
f) If $\bar{F}=x^{2} y^{2} \bar{\imath}+y \bar{J}$ then evaluate $\int_{C} \bar{F} \cdot \overline{d R}$ where C is the curve $y^{2}=4 x$ in the XY plane from $(0,0)$ to $(4,4)$.
g) Write the quadratic form corresponding to the symmetric matrix

$$
\left[\begin{array}{ccc}
2 & -3 & 5 \\
-3 & 2 & -2 \\
5 & -2 & 2
\end{array}\right]
$$

PART -B

2. a) Solve the system of equations
$x+10 y+z=6,10 x+y+z=6, x+y+10 z=6$ by Gauss Seidel method.
b) Find the currents in the following circuit

1 of 2
3. a) Verify Cayley-Hamilton theorem for the matrix $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$ and hence find A^{4}.
b) Reduce the quadratic form $3 x_{1}^{2}+5 x_{2}^{2}+3 x_{3}^{2}-2 x_{1} x_{2}-2 x_{1} x_{3}+2 x_{2} x_{3}$ to canonical form and hence state nature, rank, index and signature of the quadratic form.
4. a) Trace the curve $r=a \sin 3 \theta$.
b) Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} y \sqrt{x^{2}+y^{2}} d y d x$ by transforming to polar coordinates.
5. a) Establish a relation between β and Γ functions.
b) Evaluate $\int_{0}^{\frac{\pi}{2}} \cos ^{7} \theta d \theta$ by using β, Γ functions.
c) Express $\int_{0}^{1} \frac{x d x}{\sqrt{1-x^{5}}}$ in terms of β function.
6. a) Find the angle between the surfaces $a x^{2}+y^{2}+z^{2}-x y=1$ and conservative $b x^{2} y+y^{2} z+z=1$ at $(1,1,0)$.
b) Show that $\bar{F}=\left(y^{2}-z^{2}+3 y z-2 x\right) \bar{\imath}+\cdot(3 x z+2 x y) \bar{\jmath}+(3 x y-2 x z+2 z) \bar{k}$ is both solenoidal and irrotational.
7. a) State Greens theorem in plane and apply the theorem to evaluate $\oint_{C} x^{2} y d x+$ $y^{3} d y$, where C is the closed path formed by $y=x, y=x^{3}$ from $(0,0)$ to $(1,1)$.
b) Evaluate $\int_{S} \bar{F} . \overline{d s}$ using Gauss divergence theorem, where $\bar{F}=2 x y \bar{\imath}+y z^{2} \bar{J}$
$+z \bar{k}$ and S is the surface of the region bounded by $x=0, y=0, z=0$, $x+2 z=6$.

