

Code No: R1621011

SET - 1

II B. Tech I Semester Regular Examinations, October/November - 2017 **PROBABILITY AND STATISTICS** (Civil Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answer ALL the question in Part-A 3. Answer any FOUR Questions from Part-B

PART -A

1.	a)	Verify whether Poisson Distribution is probability mass function	(3M)								
	b)	Define Maximum error estimate	(2M)								
	c)	Write the test statistic for two way ANOVA classification	(3M)								
	d)	Write the normal equations for the least square curve of the form $y = ab^{x}$	(2M)								
	e)	What is the purpose of control charts									
	f)	Write the mean and variance of standard normal distribution									
		PART -B									
2.	a)	A sample of 4 items is selected at random from a box containing 12 items of which 5 are defective. Find the expected number of defective items	(7M)								
	b)	A box contains 100 transistors , 20 of which are defective and 10 are selected									
		 at random , find the probability that (i) all are defective (ii) all are good (iii) at most 2 are defective 									
2	`	0.02									
3.	a)	Show that Normal distribution is symmetrical distribution	(7M)								
	b)	If the probability density function is $f(x) = e^{-x}$ for $x > 0$, then find mean and variance of X	(7M)								
4.		Samples of size 2 are taken from the population 4,8,12,16,20,24 with	(14M)								
		replacement. Find									
		a) The mean of the populationb) The standard deviation of the population									
		c) Mean of the sampling distribution of means									
		d) The standard deviation of the sampling distribution of means									
5.	a)	A sample of 900 members is found to have a mean of 3.4 cm .Can it be reasonably regarded as truly random sample from large population with mean	(7M)								
		3.25cm and S.D 1.61cm									
	b)	e v ,									
		particular the track with the following results.A28303233332934									
		B 29 30 30 24 27 29									

Test whether the two horses have the same running capacity.

Code No: R1621011	R16	SET - 1

6. a) Fit the curve $y = ae^{bx}$ for the following data and also estimate y(2.4) for the (7M) following data

2	Х	2	4	6	8	10	12	
	у	1.8	1.5	1.4	1.1	1.1	0.9	
$) \overline{c}$	Calculate the two regression lines, from the following data							

- b) Calculate the two regression lines from the following data 10 14 12 11 12 9 Х v 18 17 23 19 20 15
- 7. a) Draw the control chart for \overline{X} , R chart for the following data for A₂ = 0.483 (7M)

Sam	1	2	3	4	5	6	7	8	9	10
ple										
Mea	43	49	37	44	45	37	51	46	43	47
n										
Ran	5	6	5	7	7	4	8	6	4	6
ge										

b) If the average fraction defective of a large sample of products is 0.1537 calculate the control limits

(7M)

www.firstRanker.com

2 of 2

www.FirstRanker.com

Co	Code No: R1621011				R16		(SET - 2
		II B. Tech		OBABILITY			vember - 2017	7
Tir	ne: 3	3 hours		(CIVII E	ingmeeting)		Max	. Marks: 70
		Note:	2. Answer A	Paper consist ALL the quest any FOUR Qu	tion in Part- A	A	d Part-B)	
		~~~	~~~~~~~~	<u>PAR</u>	<u>T –A</u>	~~~~~~~~	~~~~~	
1.	a)	Write the den	sity function	of Gamma di	istribution.			(2M)
	b)	Write the more	ment generat	ing function of	of Normal dis	tribution.		(2M)
	c)	State central l	limit theorem	1.				(2M)
	d)	Find the $z - s$	tatistics for	$\bar{x} = 40, \mu =$	$40, \sigma = 5.8, \tau$	i = 64.		(3M)
	e)	What is mean						(2M)
	f)	Find upper an 0.6230 and sta		tion of 0.032		f 4 samples v	with mean is	(3M)
2.	a)							(7M)
۷.	a) b)	Find the momentum $If D(n - 2)$	-	-			then find	(7M) (7M)
	0)	If $P(x = 2) = 9P(x = 4) + 90P(x = 46)$ for a Poisson variate then find (i) $P(x < 2)$ (ii) $P(x \ge 1)$						
3.	a)	Obtain the mo- function $f(x)$	$x) = \begin{cases} \frac{x}{2}, \\ 3-x, 1 \end{cases}$	-	of random v	ariable X ha	ving density	(7M)
	b)			ted with mea	n 2 and varia	nce 0.1, the	n find	(7M)
4.	a)	$P( X-2  \ge$ Define unbias binomial para	sed estimator	and show that	at x/n is an un	biased estin	nator of	(7M)
	b)	Let $S = \{1,5,$ random samp the sampling distribution of	6,8}, find th le size two d distribution o	rawn without	replacement.	Also find (i)	The mean of	(7M)
5.	a)	Three sample populations w means are equ Sample I Sample II Sample III	s ,each of siz vith equal var	riances .Test t				(7M)
	b)	A sample of 2	turer claims	hat the mean			of 20 hours. s is the sample	(7M)



(7M)

Code N	o: R162	1011				R1	6					SET - 2
6. a)	Fit the followi	curve	•	for the	e follow	ving dat	a and a	lso estin	mate y(	9) for tl	he	(7M)
	Х	2	4	6	5	8	10	12				
	у	1.8	1.5	5 1	.4	1.1	1.1	0.9				
b)							1	ollowing	g data			(7M)
	X	50	60		70	90	100					
	У	65	51	4	10	26	8					
7. a)	Draw t	he cont	rol cha	rt for $\overline{X}$	for the	follow	ing data	a for A	$_2 = 0.48$	33		(7M)
	Sam ple	1	2	3	4	5	6	7	8	9	10	
	Mea	383	508	505	582	557	337	514	614	707	753	
	n	505	500	505	502	557	557	514	014	/0/	155	
	Ran	95	128	100	91	68	65	148	28	37	80	
	ge											

b) Explain "Statistical quality control (SQC)".

www.firstRanker.com

2 of 2

www.FirstRanker.com



Co	de N	o: R1621011		<b>R16</b>	(	SET - 3				
			PROBABIL	Examinations, Oct ITY AND STATIS vil Engineering)						
Tir	ne: 3	b hours				k. Marks: 70				
		2. A	Answer ALL the o	nsists of two parts ( <b>F</b> question in <b>Part-A</b> <b>R</b> Questions from <b>Pa</b>						
			<u>I</u>	PART –A						
1.	a)	Write the distribut	tion for tossing a	coin two times		(2M)				
	b)	Write the test stati	istic for difference	es of two means		(2M)				
	c)	Write the normal	equations for the	curve $y = a + \frac{b}{a}$		(2M)				
	d)		n error estimate w	vith 95% confidence	if the sample	(3M)				
	e)	Define upper and	lower 2-σ limits f	for c-chart		(2M)				
	f)		2150) if $\mu = 20$	$40 \& \sigma = 60 \text{ Assum}$	e X is Normally	(3M)				
	Distributed PART -B									
2		Eit a hinomial dia	-			(71)				
2.	a)	Fit a binomial dis	1 2		4 5	(7M)				
		f 42	33 14		4 1					
	b)	Find the moment	generating function	on for Poisson distrib	oution	(7M)				
3.	a)	Find (i) mean (iii	) variance of the I	Distribution $f(x) = -$	$\frac{k}{x^{2}+1}  if - \infty < x < \infty$	(7M)				
	b)			tion of normal distri		(7M)				
4.	a)	with the S.D of 0.	61.Estimate 95%	pulation had on aver confidence limits for		(7M)				
	b)	viscosity of the po		(x+1).		(7M)				
				hat $\left(\frac{x+1}{n+2}\right)$ is a bia	ised estimate of					
		binomial parameter	er p.							
5.	a)		e survival rate if a	ttacked by this disea	ved. Will you reject the use is 85% in favour of	(7M)				
	b)	• •			the basis of the outputs	(7M)				
		, test whether the	machine are equa	lly effective	1					
		Machine I	OUT PUTS Machine II	Machine III						
		10	9	20						
		5	7	16						
		11	5	10						
		10	6	4	J					
				1 of 2						



Code No: R1621011	<b>R16</b>	(SET - 3)

6. a) Fit the curve  $y = a+bx+cx^2$  for the following data and also estimate y(2.4) for (7M) the following data

v 1.7 1.8 2.3 3.2	Х	1	2	3	4
<b>J</b>	у	1.7	1.8	2.3	3.2

- b) Determine the coefficient of correlation from the following data N= 25, (7M)  $\sum x = 127, \sum y = 100, \sum x^2 = 760, \sum y^2 = 449, \sum xy = 500$
- 7. The number of defects on 20 items are given below
   (14M)

   Item No. 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20
   (14M)

   No. of defects:2,0,4,1,0,8,0,1,2,0,6,0,2,1,0,3,2,1,0,2
   Devise a suitable control scheme for the future

www.FirstRanker.com

2 of 2



Code No: R1621011



**SET - 4** 

## II B. Tech I Semester Regular Examinations, October/November - 2017 PROBABILITY AND STATISTICS (Civil Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

## PART -A

1. (2M) a) Obtain the binomial distribution with mean 3 and variance 4 Kind the value of 'k' and mean if f(x) is a density function given by b) (3M)  $f(x) = \begin{cases} kx^2, & \text{if } 0 < x < 3\\ 0, & \text{otherwise} \end{cases}$ c) Write all possible samples of size two with replacement from the population (2M) {5,10,14,18,13,24} d) Give an example for Type-I and Type-II errors (2M)e) Write the two regression lines X on Y and Y on X (2M) (3M) f) Find 3- $\sigma$  limits for  $\overline{X}$  chart if  $\sum \overline{X} = 595.8$ ,  $\sum \sigma = 8.28$ , n = 18,  $A_{1=1.03}$ PART -B a) A player wins if he gets 5 on a single throw of a die. He loses if he gets 2 or 4 2. (7M) If he wins he gets Rs.50, if he loses he gets Rs. 10, otherwise he has to pay Rs.15. Find the value of the game to the player Fit a Poisson distribution to the following data (7M) b) 0 2 3 4 5 Х 1 27 5 142 69 f 156 3. a) (7M) Find the mean and variance of Gamma distribution Find (i) density function (ii) Mean (iii) variance of the distribution (7M) b)  $F(X) = 1 - e^{-2x}$  if x>0

- 4. a) A random sample of 400 items is found to be have mean 82 and S.D of 18 Find (7M) the maximum error estimate of 95% confidence interval
  - b) Let S = {3,,6,9,15,27}, find the probability distribution of the sample mean for (7M) a random sample size three drawn without replacement and also find (i) The mean of the sampling distribution of means (ii) The standard deviation of the sampling distribution of means

1 of 2

ww.FirstRanker.com



5. a) Three samples of 5, five and four motor car tyres are drawn respectively from (10M) three brands A, B, C manufactured by three machines. The life time of three tyres (in 1000 miles) is given below. Test whether the average life time of three brands of tyres are equal or not

	<u> </u>	
А	В	С
35	30	28
40	25	24
35 40 33	34	24 30
36	28	26
31	33	

stranker's choice

Code No: R1621011

- b) Write the procedure for testing of the hypothesis
- 6. a) Fit the linear curve y = a+bx for the following data and also estimate y(4) for (7M) the following data

Х	1	2	3	4	5	6
у	6	4	3	5	4	2

b) Find the rank correlation for the following data

1	Find the fank correlation for the following data										
	Х	2	4	5	6	8	11				
	у	18	12	10	8	8	5				

(14M)

(7M)

(4M)

7.

Discuss the basic principles under lying control Charts. Explain in brief how control limits are determined for i) P-chart ii) C-chart (iii) np-chart

www.FirstRar

2 of 2