ker.com www.FirstRanker.com

Code No: RT31041

rstRanl

rstranker's choice

III B. Tech I Semester Regular/Supplementary Examinations, October/November- 2017 PULSE AND DIGITAL CIRCUITS

(Common to Electronics and Communication Engineering and Electronics and Instrumentation Engineering)

Time: 3 hours

Max. Marks: 70

F 43 63

Note: 1. Question Paper consists of two parts (**Part-A** and **Part-B**)

2. Answering the question in **Part-A** is compulsory

3. Answer any **THREE** Questions from **Part-B**

PART -A

110

I	a)	Determine the upper 3-dB frequency for low pass RC circuit, if a pulse of 0.5μ sec is required to pass without distortion. Find the value of resistance if the capacitor is 0.001μ F.	[4M]
	b)	Draw the diode based negative clipper and draw its waveforms	[3M]
	c)	Give the Comparison of various logic families	[4M]
	d)	Draw and explain the fixed bias transistor bistable multivibrator	[3M]
	e)	Draw the constant current sweep circuit and explain	[4M]
	f)	Explain the principle of synchronization with frequency division	[4M]
		<u>PART –B</u>	
2	a)	Explain clearly with the help of a circuit and waveforms the response of high pass RC circuit for step and pulse input	[8M]
	b)	Explain (i) the working of attenuator as a CRO Probe ii) Ringing circuit	[8M]
3	a)	Compare and contrast series diode clipper and shunt diode clipper	[8M]
	b)	In a shunt clipper circuit $v_{in}=20 \sin wt$, R=1K Ω , and V _R =10V is obtained from a potential divider circuit using 100 V supply and 10 K Ω potential divider. i) Draw the circuit	[8M]
		ii) If R_f = 50 Ω and R_r = ∞ and V_{γ} = 0 , Sketch the input and output waveforms.	
4	a)	Explain how transistor acts as a switch? Draw the base and collector waveforms by indicating all the time intervals.	[8M]
	b)	Realize a two-input NAND gate using diode transistor logic and explain its operation with the help of truth table.	[8M]
5	a)	Design a collector-coupled monostable multivibrator using an n-p-n silicon transistor with $h_{FE(min)} = 40$, $V_{BE (cut off)} \approx 0 V$ and $I_{B(sat)} = 1.5I_{B(min)}$. Given that: $V_{CC} = 10 V$, $I_{C(sat)} = 5 mA$, $R_{C1} = R_{C2} = R_C$, $V_{CE(sat)} = 0.2 V$ and $V_{BE(sat)} = 0.7 V$. If the pulse width required is 1 ms, calculate the value of C.	[8M]
	b)	Derive expression for the pulse width of a monostable multivibrator	[8M]

R13

- **SET** 1
- 6 a) Explain the basic principle of a bootstrap sweep generator. Draw the circuit [8M] and explain its operation. Derive the expression for its slope error.
 - b) Design a relaxation oscillator to have 5kHz output frequency using a UJT and [8M] a 20 V power supply. Calculate the sweep amplitude. Given that $\eta = 0.7$, Iv = 1.5 mA, I_P = 8 μ A and V_{EB(sat)} = 3 V
- 7 a) Explain how the loading of the control signal is reduced when the number of [8M] inputs increases in a sampling gate.
 - b) How to cancel the pedestal in a sampling gate? Discuss with suitable circuit [8M] diagram.

www.firstRanker.com

ww.FirstRanker.com

Code No: RT31041

SET - 2

III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2017 **PULSE AND DIGITAL CIRCUITS**

(Common to Electronics and Communication Engineering and Electronics and Instrumentation Engineering)

Time: 3 hours

Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)	
2. Answering the question in Part-A is compulsory	

3. Answer any THREE Questions from Part-B

PART -A

	Tor a high pass we chean it is desired to pass a 5 in see sweep for a ramp	[314]
	input, with less than 0.5% transmission error. Determine the highest possible	
	value of the lower 3-dB frequency.	
b)	Draw the diode based positive clipper and draw its waveforms	[4M]
c)	Present the piecewise linear characteristics of a diode	[3M]
d)	Explain about commutating capacitors in bistable multi vibrator	[4M]
e)	Compare voltage and current time base generators	[4M]
f)	Define phase delay and phase jitter	[4M]
	PART –B	
a)	Explain the working of a piece- wise linear model of diode.	[8M]
b)	A two input NAND gate has Vcc=+5V and $1 \text{ K}\Omega$ load connected to its	[8M]
	 b) c) d) e) f) a) b) 	 input, with less than 0.5% transmission error. Determine the highest possible value of the lower 3-dB frequency. b) Draw the diode based positive clipper and draw its waveforms c) Present the piecewise linear characteristics of a diode d) Explain about commutating capacitors in bistable multi vibrator e) Compare voltage and current time base generators f) Define phase delay and phase jitter a) Explain the working of a piece- wise linear model of diode. b) A two input NAND gate has Vcc=+5V and 1 KΩ load connected to its

- output? Calculate the output voltagei)When both input are Low ii)when both input are High.
- Draw the emitter coupled clipper, explain its operation and discuss its 3 [8M] a) transfer characteristics.
 - Determine v_0 for the following circuit with the input shown and draw the b) [8M] output waveform (consider ideal diode).

- 4 Derive an expression for collector-to-emitter breakdown voltage, with open [8M] a) circuited base, BV_{CEO} in terms of collector-to-base breakdown voltage, with open circuited emitter, BV_{CBO}
 - Realize a three-input NAND gate using transistor transistor logic and explain b) [8M] its operation with the help of truth table.

1 of 2

5 a) For a collector-coupled monostable multivibrator circuit shown in Figure , [8M] $R_1 = R_2 = R = 10 \text{ k}\Omega, C = 0.01 \mu\text{F}, R_C = 1 \text{ k}\Omega, V_{CC} = 10 \text{ V}, h_{FE} = 20. \text{ In the quasi-stable state, } Q_1 \text{ is in the active region with collector current of 2 mA.}$ Find the time period and the value $0V_{BB}$. Neglect junction voltages. $I_{B(sat)} = 1.5I_{B(min)}.$

- b) Discuss the design of fixed bias bistable multivibrator. [8M]
- 6 a) With suitable diagram, explain the function of sweep circuit using UJT. [8M]
 - b) With neat circuit, explain about transistor miller time base generator. [8M]
- 7 a) Draw and explain with relevant waveforms the process of frequency division [8M] by an Astable multivibrator
 - b) Explain the function of a sampling gate used in Sampling Scopes also [8M] explain how sampling gate is used in chopping amplifiers.

MMM FIFST *****

2 of 2

rstRanker.com www.FirstRanker.com

Code No: RT31041

rstranker's choice

III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2017 **PULSE AND DIGITAL CIRCUITS**

(Common to Electronics and Communication Engineering and Electronics and Instrumentation Engineering)

Time: 3 hours	Max. Marks: 70
	Note: 1. Question Paper consists of two parts (Part-A and Part-B)
	2. Answering the question in Part-A is compulsory
	3. Answer any THREE Questions from Part-B

PART –A

1	a)	For a low pass RC circuit it is desired to pass a 3 msec sweep for a ramp input, with less than 0.5% transmission error. Determine the highest possible value of the upper 3-dB frequency.	[4M]
	b)	Draw the diode based positive clamper and draw relevant waveforms	[4M]
	c)	Give the comparison between TTL and CMOS families	[3M]
	d)	Compare all the three multivibrators with corresponding circuits	[4M]
	e)	Why the time base generators are called as sweep circuits?	[3M]
	f)	Draw and explain the operating principle of bidirectional sampling gates PART - B	[4M]
2	a)	A symmetrical square wave of peak to peak amplitude V Volts and frequency f Hz is applied to a high pass RC circuit, show that the percentage tilt is given	[8M]
		by $P = \frac{1 - e^{-1/2 jRC}}{1 + e^{-1/2 jRC}} \times 200\%$	
	b)	Analyze the low pass RC circuit for the exponential input with help of waveforms.	[8M]
3	a)	Design a diode clamper to restore a dc level of +3 Volts to an input signal of peak to peak value 12 Volts. Assume the drop across diode as 0.7 Volts.	[8M]
	b)	Discuss in detail the effects of diode characteristics on clamping voltage.	[8M]
4	a)	Explain the saturation parameters of transistor and their variation with temperature	[8M]
	b)	A silicon transistor has $h_{FE}=50$, $I_{CO}=0.1\mu A$, the cut-in voltage $V_{\gamma}=0.6V$. The parameter 'n' of avalanche multiplication is 4 and $BV_{CBO}=40V$. i) Find BV_{CEO} ii) Find PV_{CEO}	[8M]
		iii) Find BV_{CER} if $R_B = 1M\Omega^2$ iii) Find BV_{CEX} , assume $V_{BB} = 20V$ and $R_B = 10K\Omega$	
5	a)	Design a symmetric collector-coupled astable multivibrator to generate a square wave of 10 kHz having peak-to-peak amplitude of 10 V where, $h_{FE}min = 30$, $V_{CE(sat)} = 0.2$ V, $I_{C(sat)} = 2$ mA.	[8M]
	b)	Prove that an astable multivibrator works as voltage to frequency converter	[8M]
		1 of 2	

Code No: RT31041

R13

SET - 3

- 6 a) How can represent deviation from linearity in sweep circuits? Derive the [8M] relationamong possible errors in sweep circuits.
 - b) The specifications of UJT are given as $\eta = 0.6$, Vv = 2 V, $R_{BB} = 5 k\Omega$, Iv = 1.5 [8M] mA, $I_P = 8 \mu A$ and $V_{BB} = 18 V$. Calculate the component values of the UJT sweep circuit to generate an output sweep frequency of 10 kHz with sweep amplitude of 12 V.
- 7 a) Explain Synchronization of a sweep circuit with symmetrical signals [8M]
 - b) Compare unidirectional and bidirectional sampling gates [8M]

www.FirstRanker.com

FirstRanker.com www.FirstRanker.com

Code No: RT31041

Firstranker's choice

III B. Tech I Semester Regular/Supplementary Examinations, October/November - 2017 **PULSE AND DIGITAL CIRCUITS**

(Common to Electronics and Communication Engineering and Electronics and Instrumentation Engineering)

	-	-	
Time: 3 hours]	Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B) 2. Answering the question in Part-A is compulsory

3. Answer any THREE Questions from Part-B

PART -A

1	a)	Show that the low pass RC circuit acts as an integrator	[3M]		
	b)	Draw the diode based negative clamper and draw relevant waveforms	[4M]		
	c)	Draw and explain the basic CMOS inverter circuit	[3M]		
	d)	Draw the Schmitt trigger circuit and discuss its operation	[4M]		
	e)	What are different methods of generating time base waveform	[4M]		
	Ď	Compare sampling gates with logic gates	[4M]		
	,	PART –B			
r		A 2 KHz symmetric square wave of 120 V is applied to a BC sirewit having	[0] 1]		
Z	a)	A 2 KHz symmetric square wave of ± 20 v is applied to a KC circuit having 2 msec time constant. Calculate and plot the output to the scale for BC	[ow]		
		configuration as i) High pass circuit ii) I ow pass circuit			
	b)	Draw explain the RLC circuit that can generate nearly undamped oscillations	[8M]		
	0)	and explain its working.	[0101]		
3	a)	Draw the diode differentiator comparator and discuss its working with the [8			
		help of ramp input signal			
	b)	State and prove clamping circuit theorem.	[8M]		
4	a)	With neat sketches and necessary equations, explain in detail about transistor	[8M]		
	b)	switching times	[0] /]		
	D)	with the help of truth table	[8NI]		
		with the help of truth table.			
5	a)	Design an unsymmetrical astable multivibrator shown in Figure, using silicon	[8M]		
C		$n-p-n$ transistors having an output amplitude of 12 V. Given, $I_{C(at)} = 5$ mA.	[011]		
		$h_{\text{FFmin}} = 50, \text{ f} = 5 \text{ kHz}, \text{ duty cycle} = 0.6.$			
		Vac			
		$R_{c_1} \stackrel{\downarrow}{\lesssim} \stackrel{\downarrow}{\lesssim} R_1 R_2 \stackrel{\downarrow}{\lesssim} \stackrel{\downarrow}{\lesssim} R_{c_2}$			
		$\begin{bmatrix} C_1 \\ \vdots \\ $			

1 of 2

Code No: RT31041

R13

- $\left(\text{SET} 4 \right)$
- b) Calculate the component values of a monostable multivibrator using silicon [8M] *npn* transistors generating an output pulse of 150 µsec. duration. Given ($h_{fe})_{min}$ =30, $I_C(sat)$ =6mA, V_{CC} =6V and V_{BB} = -1.5V. If r'_{bb} =100 Ω , find the magnitude of the overshoot.
- 6 a) Draw and explain the transistorized constant current sweep generator circuit. [8M] Derive expression for slope error and sweep voltage.
 - b) How a compensation circuit improves the linearity of a Bootstrap voltage time [8M] base generator? Discuss.
- 7 a) What is synchronization? Why it is necessary in waveform generators? [8M] Explain the synchronization of a sweep circuit with symmetrical signals.
 - b) Write an account of bidirectional diode based sampling gates [8M]

