

Code No: **RT41048**

Max. Marks: 70

IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017 RADAR SYSTEMS

(Electronics and Communication Engineering)

Time: 3 hours

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B

PART-A (22 Marks)

1.	a)	Explain the effect of weather on Radar.	[3]
	b)	What are the limitations of power leakage in a Radar transmitter?	[3]
	c)	Explain the butterfly effect.	[4]
	d)	Define antenna beam width and write expression for it.	[4]
	e)	Define the requirements of a matched filter in a radar receiver.	[4]
	f)	Describe the principle of a circulator.	[4]

<u>**PART-B**</u> (3x16 = 48 Marks)

2.	a)	Explain the need for integration of Radar pulses and define the following terms: (i) Integration Efficiency	
		(ii)Integration Improvement Factor	[8]
	b)	A radar system transmits pulses of duration 2 μ s and repetition rate of 1 KHz. Find the minimum and maximum range for radar.	[8]
3.	a)	Explain Doppler shift and its role in pulsed and CW Radar.	[8]
	D)	diagram.	[8]
4.	a)	Explain how the problem of blind speed in MTI radar can be overcome by use of multiple PRF? Explain.	[8]
	b)	With a suitable block diagram explain the working of a conical scan tracking radar and explain the factors to be considered in determining the optimum squint angle.	[8]
5.	a)	Explain the principle of operation of phase comparison monopulse tracking radar with a block diagram.	[8]
	b)	Explain the principle of cosecant squared antenna and describe the loss in gain of cosecant squared antennas.	[8]
6.	a) b)	Explain the characteristics of a matched filter receiver with necessary equations. How a threshold level is selected in threshold detection criteria? Explain.	[8] [8]
7.	a)	Define the noise figure and noise temperature of a radar receiver and derive the expressions for it.	[8]
	b)	Explain the various methods for beam steering of a phased array antenna.	[8]

Code No: **RT41048**

IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017 RADAR SYSTEMS

Time: 3 hours

(Electronics and Communication Engineering)

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

1.	a)	Explain the factors which govern the pulse repetition frequency.	[4]
	b)	What is called a missed detection for radar?	[3]
	c)	Write down the limitations MTI performances.	[4]
	d)	What is meant by tracking in range?	[3]
	e)	Draw the architecture of a phased array antenna.	[4]
	f)	Write the features of a P-scope display in a radar receiver.	[4]

<u>PART-B</u> (3x16 = 48 Marks)

		$\frac{111111}{10} (0010 - 10 11000)$	
2.	a)	Describe the working of pulse radar with the help of block diagram.	[8]
	b)	A Radar mounted on an automobile is to be used to determine the distance to a	
		venicle travelling directly in front of it. The radar operates at a frequency of 9375	
		MHz with a pulse width of 10 ns. The maximum range is to be 500 ft. find	
		(i) Pulse repetition frequency	
		(ii) If the antenna dimensions were 1 ft by 1 ft and antenna efficiency were 0.6.	
		What would be the antenna gain in dB?	[8]
3.	a)	Explain the principle of Doppler effect and its application in CW radar.	[8]
	b)	Explain the principle of operation of $FM = CW$ altimeter with suitable diagrams	[8]
	0)	Explain die principie of operation of Part e of a damieter with surface diagrams.	[0]
1	a)	Draw and explain frequency response characteristics of MTI radar using range	
4.	<i>a)</i>	braw and explain frequency response characteristics of wirr radar using range	гот
	1 \		႞ၜ႞
	b)	With a suitable block diagram explain the working of a conical scan tracking	503
		radar.	[8]
5.	a)	Draw the block diagram of amplitude comparison monopulse tracking radar for	
		two angular coordinates and explain its operation.	[8]
	b)	Explain the principle of operation of various types of lens antennas.	[8]
6.	a)	What are the various methods for beam steering of a phased array antenna?	
		Explain any one method	[8]
	h)	Explain the principle and process of correlation detection in a radar system	[8]
	0)	Explain the principle and process of correlation detection in a radar system.	[0]
7	0)	Explain the operation of branch type duplayer in transmission and resention	
1.	a)	Explain the operation of branch type duplexer in transmission and reception	101
		modes with a neat sketch.	[8]
	b)	Compare the series feeds and parallel feeds for a phased array antenna.	181

Code No: **RT41048**

Max. Marks: 70

IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017	.7
DADAD CVCTEMC	

RADAR SYSTEMS

(Electronics and Communication Engineering)

Time: 3 hours

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

1.	a) b)	Explain the factors that influence the bandwidth of Radar.	[3]
	0)	equation?	[4]
	c)	What are the limitations of single delay line canceller?	[3]
	d)	What is automatic detection and track?	[4]
	e)	Describe the features of automatic detection in a radar receiver.	[4]
	f)	Define signal-to-noise ratio and noise figure of a radar receiver.	[4]
		$\underline{\mathbf{PART}}_{\mathbf{B}} (3x16 = 48 Marks)$	
2.	a)	What do you understand by the terms duty cycle and unambiguous range of	
	1 \	radar? Explain the technique employed for resolving range ambiguities.	[8]
	b)	Explain the integration of radar pulses with integration improvement factor. How	гот
		does it affect the radar equation?	[0]
3.	a)	Explain the various system losses in a radar.	[8]
	b)	What are advantages and disadvantages of FM-CW radar over multiple	
		frequency CW radar? Explain.	[8]
	``		
4.	a)	An MTI Radar is operating at 10 GHz with a pulse repetition frequency of 1000Hz. Calculate the lowest three blind speeds	۲ 0 ٦
	h)	Explain the concept of staggered pulse repetition frequency in case of MTL	[o]
	0)	Radar.	[8]
5.	a)	Differentiate between amplitude comparison and phase comparison methods of	
		monopulse tracking.	[8]
	b)	Write notes on various antenna parameters with reference to radar.	[8]
6.	a)	Why phased-array antennas are more suitable for radar application particularly at	
	,	VHF and UHF frequencies.	[8]
	b)	Explain the relationship between the matched filter and correlation detection in a	
		radar receiver.	[8]
7	a)	Explain the structures of balanced duplexer during transmission and reception	
		modes.	[8]
	b)	Explain the radiation patterns and feed arrangements for phased array antennas in	
		a radar system.	[8]

Code No: **RT41048**

IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017 RADAR SYSTEMS

(Electronics and Communication Engineering)

Time: 3 hours

Electionics and Communication Engineering,

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B *****

PART-A (22 Marks)

1.	a)	Define land and sea clutter.	[4]
	b)	What is called a false alarm for radar?	[3]
	c)	State the methods to reduce blind speeds in MTI Radar.	[4]
	d)	What do you understand by the term four point tracking?	[4]
	e)	Write functions of phase shifters in a phased array antenna.	[3]
	f)	Write the features of PPI display.	[4]

<u>**PART-B**</u> (3x16 = 48 Marks)

2.	a)	Draw the block diagram of a pulsed Radar and explain the significance of designing IF amplifier as a matched filter.	[8]
	b)	A pulsed radar operating at 10GHz has an antenna with a gain of 28dB and a	r - 1
	,	transmitter power of 2KW. If it is defined to detect a target with a cross section	
		of 12sq.m and the minimum detectable signal is P_{min} = -90dBm. What is the	
		maximum range of the radar?	[8]
3.	a)	What is Doppler effect? Derive the expression for Doppler frequency shift in	
		terms of relative velocity of target with respect to radar.	[8]
	b)	Explain the operation of CW – IF radar with a block diagram.	[8]
4.	a)	Explain the principle of operation of non-coherent MTI Radar with a block	
		diagram.	[8]
	b)	What is a delay-line canceller? Explain its frequency response characteristics	
		with a neat sketch.	[8]
5.	a)	Draw the block diagram of amplitude comparison monopulse tracking radar for	
		single angular coordinate and explain its operation.	[8]
	b)	Explain the principle, advantages and disadvantages of Cassegrain antenna.	[8]
6.	a)	Describe the advantages, applications and limitations of phased array antennas in	
		a radar system.	[8]
	b)	Explain the operation of CFAR.	[8]
7	-)	Engling the effect of a size in a low modifier? a northern and Describe a size frame	
1.	a)	Explain the effect of noise in radar receiver's performance? Describe noise figure	гот
	1-)	Explain the characteristics of A second displaying and an apprication	[8]
	D)	Explain the characteristics of A-scope display in a radar receiver.	[8]