II B. Tech I Semester Regular Examinations, October/November - 2017 SWITCHING THEORY AND LOGIC DESIGN

(Com to ECE, EIE and ECC)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART - A

1. a) Convert the binary number 11011101 to gray code.
b) Find the dual of the function: $A^{\prime} B(C+D)+B^{\prime} C^{\prime} D+A B^{\prime} C$.
c) What is a de-multiplexer? Write its applications.
d) Write the merits and demerits of PROM.
e) What are the differences between Johnson and ripple counter.
f) What is a state diagram? Describe with an example.

PART -B

2. a) Express the following numbers in decimal:
(i) $(26.24)_{8}$
(ii) $\quad(16.5)_{16}$
b) Generate the Hamming code word for the message 1110010111.
3. a) Implement the following Booleanfunction with only two input NOR gates:

$$
F=\left(A B^{\prime}+C D^{\prime}\right) E+B C(A+B)
$$

b) Simplify the following Boolean function with the don't conditions d using Kmap method:
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(4,5,7,12,13,14) ; \mathrm{d}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,9,11,15)$
4. a) Design a 4-bit binary comparator with basic gates.
b) Implement the following Boolean functions with a decoder.
(i) $\mathrm{F} 1=\Sigma(3,6,7,10,13,15)$
(ii) $\mathrm{F} 2=\Sigma(1,9,12,15)$
(iii) $\mathrm{F} 3=\Sigma(2,6,8,10,14,15)$
5. a) Implement the following Boolean functions using PLA.
(i) $\mathrm{F} 1=\Sigma(0,1,2,4)$
(ii) $\quad \mathrm{F} 2=\Sigma(0,5,6,7)$
b) Design a full adder circuit with a PAL.
6. a) Draw the circuit of a JK master slave flip-flop with active high clear and active
b) Design a Mod-10 counter using RS flip-flops

Code No: R1621042
R16
SET - 1
7. a) What are the capabilities and limitations of finite state machines? Explain.
b) Reduce the number of states in the following state table and tabulate the reduced state table.

$\mathbf{P S}$	$\mathbf{N S}, \mathbf{O} / \mathbf{P}$	
	$\mathbf{X}=\mathbf{0}$	$\mathbf{X}=\mathbf{1}$
a	$\mathrm{f}, 0$	$\mathrm{~b}, 0$
b	$\mathrm{~d}, 0$	$\mathrm{c}, 0$
c	$\mathrm{f}, 0$	$\mathrm{e}, 0$
d	$\mathrm{~g}, 1$	$\mathrm{a}, 0$
e	$\mathrm{d}, 0$	$\mathrm{c}, 0$
f	$\mathrm{f}, 1$	$\mathrm{~b}, 1$
g	$\mathrm{~g}, 0$	$\mathrm{~h}, 1$
h	$\mathrm{~g}, 1$	$\mathrm{a}, 0$

SET - 2

II B. Tech I Semester Regular Examinations, October/November - 2017 SWITCHING THEORY AND LOGIC DESIGN

(Com to ECE, EIE and ECC)
Time: 3 hours
Max. Marks: 70

Note: 1. Question Paper consists of two parts (Part-A and Part-B)
 2. Answer ALL the question in Part-A
 3. Answer any FOUR Questions from Part-B

PART -A

1. a) Find the 10 's complement of 2476 .
b) Define the essential prime implicants in a K-map method.
c) What is a multiplexer? Write its applications.
d) Compare PROM, PLA and PAL.
e) Write the differences between the synchronous and asynchronous sequential circuits.
f) Write the features of Moore machine.

PART-B
2. a) Convert the following number to Hexadecimal;
(i) $\quad(735.5)_{8}$
(ii) $(1011011)_{2}$
b) Perform the following subtraction in binary using 1's and 2's complement
method: $(677)_{10}-(899)_{10}$
3. a) Find the complement and dual of the given function:
$x y+x\left(w z+w z^{\prime}\right)$
b) Simplify the following Boolean function using tabular method:
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(2,4,6,10,12) ; \mathrm{d}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(0,8,9,13)$
4. a) Realize $4: 16$ decoder using $2: 4$ decoders.
b) Implement the following Boolean function with 4X1 multiplexer and external
gates. Connect inputs B and C to the selection lines.

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(1,2,4,7,8,9,10,11,13,15)
$$

5. a) Draw the internal structure of 8 X 1 PROM and explain its operation.
b) Give the realization of the following Boolean functions using PLA with 5
inputs, 4 outputs and 8 and gates.
$\mathrm{F} 1=\Sigma(0,1,2,3,11,11,13,14,15,16,17,18,19,27,28,29,30,31)$
$\mathrm{F} 2=\Sigma(4,5,6,7,8,9,10,11,20,21,22,23,30)$
6. a) Convert the JK flip into T flip-flop.
b) Design a Mod-12 counter using D flip-flops.

Code No: R1621042
R16
SET - 2
7. a) Design a synchronous sequential circuit which goes through the following
states: $1,3,5,3,6,1,3,5$.
b) Convert the following Mealy machine into a corresponding Moore machine.

PS	NS, Z	
	$\mathrm{X}=0$	$\mathrm{X}=1$
A	$\mathrm{C}, 0$	$\mathrm{~B}, 0$
B	$\mathrm{A}, 1$	$\mathrm{D}, 0$
C	$\mathrm{B}, 1$	$\mathrm{~A}, 1$
D	$\mathrm{D}, 1$	$\mathrm{C}, 0$

II B. Tech I Semester Regular Examinations, October/November - 2017 SWITCHING THEORY AND LOGIC DESIGN

(Com to ECE, EIE and ECC)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A

1. a) What are the universal gates? Why they are called as universal gates?
b) Find the complement of the function: $A^{\prime} B(C+D)+B^{\prime} C^{\prime} D+A B^{\prime} C$.
c) Write the truth table of a full subtractor.
d) Write the merits and demerits of PLA.
e) Write the differences between the Combinational and sequential circuits.
f) What is a state table? Describe with an example.

PART -B

2. a) Convert the following numbers to Binary:
(i) $(27.315)_{10}$
(ii) $\quad(68 \mathrm{BE})_{16}$
b) Reduce the following Boolean function to four literals and draw the logic diagram: $\quad\left(A^{\prime}+C\right)\left(A^{\prime}+C^{\prime}\right)\left(A+B+C^{\prime} D\right)$
3. a) Implement the following Boolean function with only two input NAND gates: $F=\left(A B^{\prime}+D^{\prime}\right) E+C\left(A^{\prime}+B^{\prime}\right)$
b) Simplify the following Boolean function with the don't conditions d using Kmap method:
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,3,8,10,15) ; \mathrm{d}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(0,2,9)$
4. a) Design an excess-3 adder circuit and explain its operation.
b) Implement the following Boolean function with 8X1 multiplexer and external gates:

$$
\mathrm{F}(\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D})=\Sigma(1,3,4,11,12,13,14,15)
$$

5. a) Design a 3-bit binary to Excess-3 code converter using a PROM.
b) Implement the following Boolean functions using PLA.
(i) $\mathrm{F} 1=\Sigma(0,1,2,4)$
(ii) $\mathrm{F} 2=\Sigma(0,5,6,7)$
6. a) What is the drawback of JK flip-flop? How is it eliminated in Master Slave
b) Design a decade counter using T flip-flops.

R16

SET - 3
7. a) Obtain the state table and state diagram for a sequence detector to recognize the occurrence of sequence bits $110 \& 001$.
b) Find the equivalence partition and reduced table for the given state machine.

$\mathbf{P S}$	$\mathbf{N S}, \mathbf{O} / \mathbf{P}$	
	$\mathbf{X}=\mathbf{0}$	$\mathbf{X}=\mathbf{1}$
A	$\mathrm{B}, 0$	$\mathrm{E}, 0$
B	$\mathrm{E}, 0$	$\mathrm{D}, 0$
C	$\mathrm{D}, 1$	$\mathrm{~A}, 0$
D	$\mathrm{B}, 1$	$\mathrm{E}, 0$
E	$\mathrm{C}, 0$	$\mathrm{D}, 0$

Code No: R1621042

R16

SET - 4

II B. Tech I Semester Regular Examinations, October/November - 2017 SWITCHING THEORY AND LOGIC DESIGN

(Com to ECE, EIE and ECC)
Time: 3 hours
Max. Marks: 70
Note: 1. Question Paper consists of two parts (Part-A and Part-B)
2. Answer ALL the question in Part-A
3. Answer any FOUR Questions from Part-B

PART -A

1. a) Find the 2 'c complement of the decimal number 97 .
b) What are the prime implicants in a K-map method?
c) What is a decoder? Write its applications.
d) Write the merits and demerits of PAL.
e) What are registers? Write their applications.
f) Write the features of Mealy machine.

PART -B

2. a) Convert the following numbers to Octal:
(i) $(1010.1010)_{2}$
(ii) $(\mathrm{FAFA})_{16}$
b) Reduce the following Boolean function to three literals and draw the logic
diagram: $\quad\left(x^{\prime} y^{\prime}+z\right)^{\prime}+z+x y+w z$
3. a) Find the dual and complement of the following function:
$A^{\prime} B D^{\prime}+B^{\prime}\left(C^{\prime}+D^{\prime}\right)+A^{\prime} C^{\prime}$
b) Simplify the following Boolean function using tabular method:
$\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(0,6,8,13,14) ; \mathrm{d}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(2,4,10)$
4. a) Design a BCD adder circuit and explain its operation.
b) Implement the following Boolean function with 4X1 multiplexer and external gates: $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma(1,3,4,11,12,13,14,15)$
5. a) Realize the following Boolean functions using a PROM
(i) $\mathrm{F} 1=\Sigma(0,4,7)$
(ii) $\mathrm{F} 2=\Sigma(1,3,6)$
(iii) $\mathrm{F} 3=\Sigma(1,3,4,6)$
b) Design a BCD to Excess-3 code converter using a PAL.
6. a) Convert JK flip-flop into D flip-flop.
b) Design a modulo-10 ripple counter using RS flip-flops.

Code No: R1621042
R16
SET - 4
7. a) Design a sequence detector that detects the overlapping sequence of 011010 using T flip-flops.
b) Draw the diagram of Mealy type state machine for serial adder and explain its operation.

