

R13

Set No. 1

${\bf IV~B. Tech~II~Semester~Regular~Examinations, April/May-2017}$

SPECIAL ELECTRICAL MACHINES

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B

		<u>PART-A</u> (22 Marks)	
1.	a)	Define reluctance. Deduce the relation between reluctance and inductance.	[4]
	b)	What is a stepper motor? What are its applications?	[4]
	c)	Compare between permanent magnets and electromagnets.	[4]
	d)	Is BLDC motor a DC motor or an AC motor? Justify your answer.	[3]
	e)	What are different types of linear motors?	[3]
	f)	What are main characteristics of traction drives?	[4]
		$\underline{\mathbf{PART-B}} \ (3x16 = 48 \ Marks)$	
2.	a)	Discuss the design of stator and rotor pole arc of SR motors.	[8]
	b)	What is co-energy? Explain the torque production mechanism in SR motors.	
		Also derive the expression for torque produced in SR motors.	[8]
_			
3.	a)	Define step angle. Explain the operation of a variable reluctance stepper motor.	[8]
	b)	With a block diagram, explain the closed loop control of a stepper motor.	[8]
	,	E 1: 4 1: C PMPC (11: :/ /	FO1
4.	a)	Explain the working of a PM DC motor and derive its torque equation.	[8]
	b)	Compare between PMDC motors and DC motors.	[8]
5.	a)	With the help of model waveforms for back emf, gate pulses of converter, stator	[8]
٠.	u)	currents and voltages, explain the operation of a BLDC motor.	[0]
	b)	Compare between sensorless control and sensor based control of BLDC motors.	[8]
	- /		L-3
6.	a)	What are linear motors? How the linear motors are useful in manufacturing	[8]
		industry?	
	b)	Discuss the operating principle and applications of linear synchronous motors.	[8]
7.		What are the advantages of using linear motors for electric traction? Discuss the	[16]
		application of single sided linear induction motor for traction drives.	[-0]

1 of 1

R13

Set No. 2

IV B.Tech II Semester Regular Examinations, April/May - 2017

SPECIAL ELECTRICAL MACHINES

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70 Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B **** PART-A (22 Marks) 1. Explain the basic principle of operation of switched reluctance motor. [4] a) Differential between stepper motors and switched reluctance motors. [4] List the disadvantages of permanent magnets over electromagnets. [3] c) Draw the waveform of back-emf of a PM BLDC motor. [4] Mention any four applications of linear motors. [4] e) What type of motor is mainly used in traction? Why? f) [3] PART-B (3x16 = 48 Marks)What is the need for position sensor in SRM control? Explain. 2. [8] a) With the help of a neat schematic diagram, explain the closed loop control of an b) SRM. [8] List and explain different types of stepper motors. [8] 3. a) Discuss the theory of torque production in stepper motors. b) [8] Compare the performance characteristics of DC motors with PM DC motors. 4. a) [8] What are moving coil motors? Explain its operating principle and applications. b) [8] What are the main advantages of BLDC motors? What are its drawbacks? List 5. a) the application areas of BLDC motors. [8] What is the cause for torque ripples in BLDC motors? How to reduce torque ripples in BLDC motors? [8] 6. Explain the constructional details of a linear synchronous motor? Also mention [16] its applications. What are the advantages and disadvantages of using linear induction motor for 7. a) [8] electric traction? b) Distinguish between AC motors and DC motors for traction. [8]

R13

Set No. 3

IV B.Tech II Semester Regular Examinations, April/May - 2017

SPECIAL ELECTRICAL MACHINES

(Electrical and Electronics Engineering)

Time: 3 hours Max. M				
		Question paper consists of Part-A and Part-B		
		Answer ALL sub questions from Part-A		
		Answer any THREE questions from Part-B		

		PART-A (22 Marks)		
1.	a)	List the merits of SRM over conventional motors.	[4]	
	b)	What are different types of stepper motors?	[4]	
	c)	Give the applications of PM DC motors.	[4]	
	d)	What are the main advantages of BLDC motors?	[4]	
	e)	How does a linear induction motor works?	[3]	
	f)	Why DC series motors were preferred for traction drives?	[3]	
		$\underline{\mathbf{PART-B}} \ (3x16 = 48 \ Marks)$		
2.	a)	Draw the constructional details of an SRM and explain its operating principle.	[8]	
	b)	Explain the reasons for ripples in torque produced by the SRM. Also list		
		various applications of SRM.	[8]	
3.	a)	What is a hybrid stepper motor? Explain its operation and applications.	[8]	
	b)	Compare between open loop control and closed loop control of stepper motors.	[8]	
4.	a)	Discuss the principle of operation of permanent magnet DC motors. Also		
		mention their applications.	[8]	
	b)	Draw the B-H curve of a magnetic material and explain the significance of	507	
		hysteresis loop.	[8]	
_	-)	Differential lateral and DI DC and a lateral and DI DC		
5.	a)	Differentiate between permanent magnet BLDC motor and permanent magnet synchronous motor. Also list few applications of BLDC motors.	F01	
	b)	What is the need for position sensor in BLDC motor control? How is sensorless	[8]	
	U)	control of BLDC motor achieved?	[8]	
		control of BEDC motor achieved:	[၀]	
6.	a)	With neat diagrams, explain the constructional details of linear induction	[10]	
0.	u)	motors.	[10]	
	b)	Discuss the applications of linear induction motors.	[6]	
	- /		r - J	
7.	a)	Discuss the role and potential for linear motors in traction systems.	[8]	
	b)	What are various ac motors used in traction systems? Explain.	[8]	

R13

Set No. 4

IV B.Tech II Semester Regular Examinations, April/May - 2017

SPECIAL ELECTRICAL MACHINES

(Electrical and Electronics Engineering)

Time: 3 hours Max. Marks: 70 Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B **** PART-A (22 Marks) 1. a) Enlist various applications of Switched Reluctance Motors. [4] Explain the principle of operation of a stepper motor. [4] Compare between soft and hard ferromagnetic materials. [4] c) What is the need for position sensor in the control of BLDC motors? [4] Compare between linear DC motor and linear induction motors. [3] e) What are the different motors used in traction system. f) [3] PART-B (3x16 = 48 Marks)With a neat circuit diagram, explain the operation of an asymmetric power 2. a) converter topology for a three-phase 6/4 SRM. [8] b) Discuss the torque production mechanism in switched reluctance motors. Derive the expression for torque produced by the switched reluctance motor. [8] With neat diagrams, explain in detail the constructional details of a stepper 3. a) [8] Discuss the open loop control of a stepper motor. [8] b) What are the advantages and disadvantages of permanent magnet machines? 4. a) Mention the applications of PM DC motors. [8] Draw and explain the constructional details of a permanent magnet DC motor. b) [8] Explain the constructional details of a PM BLDC motor. [8] 5. a) What are various components that are required for the control of BLDC motors? Explain. [8] What are linear motors? How are they different from rotary motors? Explain the 6. a) application areas of linear motors. [8] Explain the principle of operation of linear induction motor. [8] What are the main characteristics of traction motors? Which motor is mainly 7. a) [8] used in traction drives? Compare between AC and DC traction systems. [8]