FirstRanker.com www.FirstRanker.com

www.FirstRanker.com





## IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017 **VLSI DESIGN**

#### (Common to Electronics and Communication Engineering and Electronics and **Instrumentation Engineering**)

Time: 3 hours

Firstranker's choice

Code No: **RT41041** 

Max. Marks: 70

#### Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B \*\*\*\*\*

## PART-A (22 Marks)

| 1.         | a) | Clearly explain about ION-IMPLANTATION step in IC fabrication.                                  | [4] |
|------------|----|-------------------------------------------------------------------------------------------------|-----|
|            | b) | Why is VLSI design process presented in NMOS only? Justify with an example?                     | [4] |
|            | c) | Explain the formal estimation of CMOS Inverter delay.                                           | [4] |
|            | a) | Write a short note on clocked sequential circuits.                                              | [3] |
|            | e) | Write a short note on clock mechanisms in VLSI design.                                          | [4] |
|            | f) | List out the applications of FPGAs.                                                             | [3] |
|            |    | $\underline{\mathbf{PART}}_{\mathbf{B}} (3x16 = 48 Marks)$                                      |     |
| 2.         | a) | Compare CMOS and Bipolar technologies.                                                          | [8] |
|            | b) | Explain the NMOS fabrication procedure.                                                         | [8] |
|            | ,  |                                                                                                 |     |
| 3.         | a) | Illustrate the lambda-based design rules with neat sketches.                                    | [8] |
|            | b) | Design an area efficient layout diagram for the CMOS logic shown below                          |     |
|            |    | $Y = \overline{(A + B + C)}.$                                                                   | [8] |
|            |    |                                                                                                 |     |
| 4.         | a) | What is meant by sheet resistance Rs? Explain the concept of Rs applied to MOS                  |     |
|            |    | transistors.                                                                                    | [8] |
|            | b) | Calculate on resistance of an inverter from VDD to GND. If n- channel sheet                     |     |
|            |    | resistance Rsn= $10^4 \Omega$ per square and P-channel sheet resistance Rsp = $3.5 \times 10^4$ |     |
|            |    | $\Omega$ per square.(Zpu=4:4 and Zpd=2:2).                                                      | [8] |
|            |    |                                                                                                 |     |
| 5.         | a) | Give the subsystem design considerations of a four-bit adder.                                   | [8] |
|            | b) | Explain step-by-step subsystem design approach. Consider an example.                            | [8] |
|            | 0) |                                                                                                 | [0] |
| 6.         | a) | Explain the terms (i) Static power dissipation (ii) Dynamic power dissipation.                  | [8] |
| 0.         | b) | Discuss the VLSI design issues and design trends                                                | [8] |
|            | 0) |                                                                                                 | [0] |
| 7          | a) | Write about FPGA Programming Technologies in detail                                             | [8] |
| , <b>.</b> | h) | Explain the step by step approach of FPGA design process on Xilinx                              | [8] |
|            | 0) | environment                                                                                     | [0] |
|            |    |                                                                                                 |     |

1 of 1



www.FirstRanker.com

**R13** 



## IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017 VLSI DESIGN

(Common to Electronics and Communication Engineering and Electronics and Instrumentation Engineering)

Time: 3 hours

Code No: **RT41041** 

Max. Marks: 70

#### Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B \*\*\*\*\*

# PART-A (22 Marks)

| 1. | a)<br>b) | Define threshold voltage of a MOS device and explain its significance.<br>Discuss different forms of pull up, mentioning merits and demerits of each form. | [4]<br>[4] |
|----|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|    | c)       | What is meant by standard unit of capacitance? Give some area capacitance calculations.                                                                    | [4]        |
|    | d)       | Draw and explain fan-in and fan-out characteristics of different CMOS design Technologies.                                                                 | [4]        |
|    | e)<br>f) | Give two reasons about the importance of package selection in VLSI design.<br>Write a short notes on FPGA configuration and configuration modes.           | [3]<br>[3] |
|    |          | <b>PART-B</b> $(3x16 = 48 Marks)$                                                                                                                          |            |
| 2. | a)       | Derive an equation for $I_{DS}$ of an n-channel Enhancement MOSFET operating in Saturation region.                                                         | [8]        |
|    | b)       | An nMOS transistor is operating in saturation region with the following                                                                                    |            |
|    |          | parameters. VGS = 5V ; Vtn = 1.2V ; W/L = 110; $\mu$ nCox = 110 $\mu$ A/V <sup>2</sup> . Find Transconductance of the device.                              | [8]        |
| 3. | a)       | Write a short note on "2µm Double Metal, Double Poly, CMOS/BiCMOS rules".                                                                                  | [8]        |
|    | b)       | Draw the circuit diagrams and the corresponding stick diagrams for nMOS and CMOS inverters.                                                                | [8]        |
| 4. | a)       | What are the alternate gate circuits are available? Explain any one of item with suitable sketch.                                                          | [8]        |
|    | b)       | Implement the realization of gates using NMOS and PMOS.                                                                                                    | [8]        |
|    |          |                                                                                                                                                            | [0]        |
| 5. | a)       | Describe the nature of a parity generator and explain its structured design approach                                                                       | [8]        |
|    | b)       | Draw and give the design approach for a carry look ahead adder with its structure.                                                                         | [8]        |
| 6. | a)<br>b) | Write and explain about the sources of power dissipation in VLSI Design.<br>Explain in detail about ASIC design flow with neat sketch.                     | [8]<br>[8] |
| 7. | a)<br>b) | Draw and explain the routing architecture of field programmable gate arrays.<br>Write about the shift register design and implementation onto FPGA.        | [8]<br>[8] |
|    |          |                                                                                                                                                            |            |



www.FirstRanker.com

**R13** 



## IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017 VLSI DESIGN

#### (Common to Electronics and Communication Engineering and Electronics and Instrumentation Engineering)

Time: 3 hours

Code No: **RT41041** 

Max. Marks: 70

#### Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B \*\*\*\*\*

# PART-A (22 Marks)

| 1. | a) | With neat sketch, explain drain characteristics of an n-channel enhancement MOSFET. | [4]   |
|----|----|-------------------------------------------------------------------------------------|-------|
|    | b) | Compare and contrast the Lambda based and Micron based Rules for layout             | [ · ] |
|    |    | design.                                                                             | [4]   |
|    | c) | Draw and explain the schematic of Pseudo-niviOS inverter.                           | [3]   |
|    | a) | Explain the concept of driving large capacitive loads with, relevant examples.      | [4]   |
|    | e) | List out the back-end steps in ASIC design flow.                                    | [3]   |
|    | t) | Write about Programmable I/O blocks in FPGAs.                                       | [4]   |
|    |    | <b><u>PART-B</u></b> $(3x16 = 48 Marks)$                                            |       |
| 2. | a) | With neat sketch explain BICMOS fabrication in an n-well process.                   | [8]   |
|    | b) | Explain the term "aspects of MOSFET" in VLSI Design.                                | [8]   |
|    |    |                                                                                     |       |
| 3. | a) | Tabulate the encoding scheme for a simple single metal CMOS/Bi-CMOS                 |       |
|    |    | process with respect to various MOS layers.                                         | [8]   |
|    | b) | Draw the symbolic layout for the CMOS inverter and write the general CMOS           |       |
|    |    | logic gate layout guidelines.                                                       | [8]   |
|    |    | 2.0.                                                                                |       |
| 4. | a) | Discuss the inverter delay and propagation delay.                                   | [8]   |
|    | b) | Write about the scaling limitations due to sub Supply voltages in MOSFETS.          | [8]   |
| 5  | a) | Explain the architectural issues of subsystem design                                | [8]   |
| 5. | h) | Explain the structural design approach with an example                              | [8]   |
|    | 0) | Explain the structural design approach with an example.                             | [0]   |
| 6. | a) | What is the need of testability? Explain design for testability.                    | [8]   |
|    | b) | Explain about SoC design.                                                           | [8]   |
|    |    |                                                                                     | -     |
| 7. | a) | Describe the shift register implementation using VHDL.                              | [8]   |
|    | b) | Explain about different programmable elements in FPGA architectures.                | [8]   |



Code No: **RT41041** 

Firstranker's choice

# **R13**

Set No. 4

Max. Marks: 70

[6]

## IV B.Tech I Semester Regular/Supplementary Examinations, October/November - 2017 VLSI DESIGN

(Common to Electronics and Communication Engineering and Electronics and **Instrumentation Engineering**)

**Time: 3 hours** 

#### Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any THREE questions from Part-B \*\*\*\*\*

# PART-A (22 Marks)

| 1. | a) | Explain various regions of CMOS inverter transfer characteristics.            | [3]  |
|----|----|-------------------------------------------------------------------------------|------|
|    | b) | Write a short note MOS layers and symbolic diagram translation to MASK        |      |
|    |    | form.                                                                         | [4]  |
|    | c) | Define and give the expressions for any four scaling factors of MOS device    |      |
|    |    | parameters.                                                                   | [4]  |
|    | d) | Write about general considerations in subsystem design processes.             | [4]  |
|    | e) | Write about technology options in VLSI design.                                | [3]  |
|    | f) | Explain the need for FPGA and its applications.                               | [4]  |
|    |    | <b>PART–B</b> $(3x16 = 48 Marks)$                                             |      |
| 2. | a) | Explain different forms of pull-ups used as load in CMOS enhancement.         | [8]  |
|    | b) | Determine pull-up to pull-down ratio of an NMOS inverter when driven through  |      |
|    |    | one or more pass transistors.                                                 | [8]  |
|    |    |                                                                               |      |
| 3. | a) | Tabulate the encoding scheme for a simple single metal nMOS process with      |      |
|    |    | respect to various MOS layers.                                                | [8]  |
|    | b) | What is stick diagram and explain about different symbols used for components |      |
|    |    | in Stick diagram. Draw the stick and layout for a two input CMOS NAND gate.   | [8]  |
|    |    |                                                                               |      |
| 4. | a) | Describe three sources of wiring capacitances. Explain the effect of wiring   |      |
|    |    | capacitance on the performance of a VLSI circuit.                             | [8]  |
|    | b) | Write about the scaling limitations due to sub threshold currents in MOSFETS. | [8]  |
|    |    | L.                                                                            |      |
| 5. |    | Realize the 2-i/p NAND gate using NMOS, PMOS and CMOS technologies.           | [16] |
|    |    |                                                                               |      |
| 6. | a) | Discuss the design flow of system on chip design with neat sketch.            | [8]  |
|    | b) | Explain the steps of specification and logic design in ASIC design flow.      | [8]  |
| _  |    |                                                                               |      |
| 7. | a) | Write the steps involved to prototype the HDL code onto FPGA device.          | [10] |
|    | b) | List out the salient features of Xilinx 3000 CLB.                             | [6]  |

## 1 of 1