R10

Set No. 1

Code No: **R42021**

IV B.Tech II Semester Regular Examinations, April/May - 2014 DIGITAL CONTROL SYSTEMS

(Electrical and Electronics Engineering)

T	ime	: 3 hours Max. Mar	Max. Marks: 75	
		Answer any Five Questions All Questions carry equal marks *****		
1	a) b)	Explain about the shifting and scaling operator. Discuss briefly about the linear time invariant and causal systems.	[8] [7]	
2	a) b)	Write the mapping points between S-Plane and Z-plane. Find the z-transform of (i) unit step (ii) $f(t)=t e^{-at}$	[7] [8]	
3	a) b)	Explain about the weighted resistor 3 bit D/A converter? Explain any examples of data control systems?	[7] [8]	
4	a)	What are the methods for computation of state transition matrix. Explain any	[7]	
	b)	A discrete time system is described by the differential equation $y(k + 2) + 5y(k + 1) + 6y(k) = 4U(k)$ assuming initial conditions are $y(0) = 1$, $y(1) = 0$, T = 1 sec. Find the state transition matrix.	[8]	
5	a) b)	Explain the Duality between controllability and observability. Consider that a digital control system is described by the state equation. x(k + 1) = Ax(k) + Bu(k) Where $A = \begin{bmatrix} 1 & -2 & 0 \\ 3 & 2 & 1 \\ -1 & 1 & 4 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ -1 & 1 \\ 0 & 1 \end{bmatrix}$, Determine the controllability of the system.	[7] [8]	
6	a)	 Explain the following mapping between the S-Plane and the Z-Plane. (i) Primary strips and complementary Strips (ii) Constant frequency loci (iii) Constant damping ratio loci 	[12]	
	b)	Explain the stability conditions of closed loop systems in the Z over in the S- plane.	[3]	
7	a) b)	Write the transient response specifications? Explain the design procedure in the w-plane?	[7] [8]	
8	a)	Discuss the necessary conditions for design of state feedback controller	[10]	
	b)	Explain about the state observers?	[5]	

1 of 1

||"|"||"||"""|

controller through pole placement?

Code No: **R42021**

Time : 3 hours

IV B.Tech II Semester Regular Examinations, April/May - 2014 **DIGITAL CONTROL SYSTEMS** (Electrical and Electronics Engineering)

Max. Marks: 75

	Answer any Five Questions All Questions carry equal marks *****					
1		Explain in detail about the periodic and nonperiodic signals with a neat sketch?	[15]			
2	a)	Solve the following difference equation $y(k+2) + 3y(k+1) + 2y(k) = 0; y(-1) = -\frac{1}{2}, y(-2) = \frac{3}{4}$	[5]			
	b) c)	Obtain the z transform of $f(t) = e^{-at}$ Find the inverse z-transform of $F(Z) = \frac{1}{Z(Z-0.2)}$	[5] [5]			
3	a) b)	State and prove the sampling theorem? Derive transfer functions for the following data hold circuits. (i) Zero order hold circuit (ii) First order hold circuit	[7] [8]			
4	a) b)	Write the controllable and diagonal canonical forms? Consider a discrete linear data control system, whose input-output relation is described by the difference equation $y(k + 2) + 2y(k + 1) + y(k) = u(k)$ initial conditions are $x(0) = 0$ and $x(1) = 1$. Test the state controllable and observable canonical forms?	[7] [8]			
5	a) b)	Explain the concepts of controllability and observability. Investigate the controllability and observability of the digital system. $x(k+1) = \begin{bmatrix} -1 & 1 \\ 0 & -1 \end{bmatrix} x(k) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u(k) \text{ and } y(k) = \begin{bmatrix} 1 & 1 \end{bmatrix} x(k)$	[7] [8]			
6	a)	List the difference between the Jury stability test and stability analysis using	[7]			
	b)	Consider the discrete time unity feedback control system (T=1 sec) whose open loop pulse transfer function is given by $G(z) = \frac{K(0.3679Z + 0.2642)}{(Z - 0.3679)(Z - 1)}$ Determine the range of K for stability by use of the Jury stability test.	[8]			
7	a)	Discuss about the response of a linear time invariant discrete time system to a sinusoidal input?	[7]			
	b)	Consider the system defined by $x(kT) = u(kT) + ax((k-1)T)$, $0 < a < 1$ Where u(kT) is the input and x(kT) the output. Obtain the steady state output x(kT), when the input u(kT) is the sampled sinusoidal.	[8]			
8		Derive the necessary and sufficient conditions for design of state feedback	[15]			

Set No. 2

||"|"||"||"""|

Code No: **R42021**

Time : 3 hours

IV B.Tech II Semester Regular Examinations, April/May - 2014

DIGITAL CONTROL SYSTEMS

(Electrical and Electronics Engineering)

Answer any Five Questions All Questions carry equal marks

1		Discuss in detail about the continuous and discrete time signals with neat sketches?	[15]
2	a)	Obtain the Z-transform of the following	[8]
		(i) $x(t) = \frac{1}{a}(1 - e^{-at})$ (ii) $x(t) = t^2 e^{-at}$ where 'a' is constant	
	b)	Consider $x(z)$ where $x(z) = \frac{2z^3 + z}{(z-2)^2(z-1)}$ obtain the inverse Z-transform of	[7]
		x(z).	
3	a)	What are the various types of analog to digital converters? Explain successive approximation type analog to digital converters with neat schematic diagram?	[8]
	b)	Describe the sample and hold operations?	[7]
4	a)	Write the state transition matrix and its properties?	[7]
	b)	Obtain the state transition matrix of the following discrete time system x(k + 1) = Gx(k) + Hu(k)	[8]
		Where $y(k) = Cx(k)$	
		$G = \begin{bmatrix} 0 & 1 \\ -2 & -2 \end{bmatrix}, H = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, G = \begin{bmatrix} 1 & 0 \end{bmatrix}$	
5	a)	Explain the test for controllability and observability.	[7]
	b)	Given the system x (k+1)=Ax (k)+Bu(k)	[8]
		y(k) = c x(k)	
		Where $A = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $C = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$	
		Determine the state controllability of the system.	
6	a)	State and explain the jury stability test.	[8]
	b)	Using Jury's stability criterion find the range of K, for which the characteristic equation $z^3 + Kz^2 + 1.5Kz - (K + 1) = 0$ is closed loop stable.	[7]
7	a)	• Explain the relation between the bilinear transformation and the w plane?	[7]
	b)	Discuss the review of phase lag, lead and lag-lead compensator?	[8]
8	a)	Explain the sufficient conditions for design of state feedback controller through pole placement?	[7]
	b)	Derive the ackerman's formula?	[8]
		1 of 1	

Set No. 3

Max. Marks: 75

R10

R10 Code No: **R42021** IV B.Tech II Semester Regular Examinations, April/May - 2014 **DIGITAL CONTROL SYSTEMS** (Electrical and Electronics Engineering) Time: 3 hours Max. Marks: 75 **Answer any Five Questions** All Questions carry equal marks ***** 1 a) Explain about the discrete time signals with a neat sketch? [8] b) Describe about the nonperiodic signals with a neat sketch? [7] 2 a) State and prove the following Z-Transform theorems [7] (i) Shifting theorem (left & right) (ii) Initial value theorem (iii) Final value theorem b) Find the Z-transform of the following [8] $f(t) = e^{-at} \sin \omega t$ (i) (ii) 3 a) What are the advantages of sampling process in control systems? [5] b) Explain any two types of digital to analog converters with a neat circuit? [10] 4 a) What are the state space representation forms and explain them. [8] b) Consider the following system. [7] $\frac{Y(z)}{Y(z)} = \frac{z}{Z^2 + 1.3Z + 0.4}$ Obtain the state space representation forms of controllable and observable canonical forms. 5 a) Derive the necessary condition for the digital control system [7] X(K+1) = AX(K) + Bu(K)C(k) = DX(K) to be observable. b) Examine whether the discrete data system [8] $x(k+1) = \begin{bmatrix} 0 & 1 \\ -2 & -2 \end{bmatrix} x(k) + \begin{bmatrix} 1 \\ -1 \end{bmatrix} u(k)$ $y(k) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(k)$ Is (i) state controllable (ii) output controllable and (iii) observable. 6 a) Discuss the stability analysis of discrete control system using (i) Routh stability [7] criteria (ii) Bilinear transformation b) Using Jury's stability criterion, determine the stability of the following discrete [8] time systems (ii) $z^3 - 1.1z^2 - 0.1z + 0.2 = 0$ (i) $z^3 + 3.3z^2 + 4z + 0.8 = 0$

Set No. 4

1 of 2

R10

Code No: **R42021**

7 a)

[10]

Set No. 4

b) Consider the transfer function system shown. The sampling period T is assumed to be 0.1 sec. obtain G(w).

Explain about the digital PID controllers with neat sketch?

8 a) Explain the concept of state feedback controllers?
b) Consider the system x(k + 1) = Gx(k) + Hu(k) [5]

$$G = \begin{bmatrix} 0 & 1 \\ -0.16 & -1 \end{bmatrix}, H = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Determine a suitable state feedback gain matrix 'k' such that the system will have the closed loop poles at $z = 0.5 \pm j0.5$

[10]

[5]