SET - 1 Code No: R22042

II B. Tech II Semester Supplementary Examinations January – 2014 ELECTRO MAGNETIC WAVES AND TRANSMISSION LINES

(Com. to ECE, EIE)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. a) What is a point charge? Derive the expression for electric field intensity using coulombs law from fundamentals.
 - b) Two point charges 5nC and -2nC are located at (2,0,4) and (-3,0,5) respectively.
 - i) Determine the force on a point charge located at (1,-3,7)
 - ii) Find the electric field E at (1,-3,7).
- 2. a) State Biot-Savart's law and find field at arbitrary point "p" due to a straight filamentary
 - b) A circular loop located on $x^2+y^2=9$, z=0 carries a direct current of 10 A along a_{ϕ} . Determine **H** at (0,0,4) and (0,0,-4).
- 3. a) Differentiate conduction and displacement current densities
 - b) In a medium, conduction current density given by $J = 10 \text{ z } \sin^2 \varphi \text{ a}_{\rho} \text{ A/m}^2$, find the current through the cylindrical surface $\rho = 2$, $1 \le z \le 5$ m.
- 4. a) Derive the wave equation for conducting medium.
 - b) A plane wave is propagating in a medium having the properties $\mu_r = 4$, $\epsilon_r = 36$, $\sigma = 1$ S/m and the $\mathbf{E} = 100e^{-az}\cos(10^9t-\beta z)a_x \text{ V/m}$, determine the associated magnetic field.
- 5. a) Explain the factors on which cut off frequency of a parallel plane wave guide depend.
 - b) Obtain the frequency in terms of cut off frequency f_c at which the attenuation constant due to conductor losses for the TM_n mode is minimum for a parallel plane wave-guide.
- a) Explain the principal of impedance matching with quarter-wave transformer.
 - b) A 50Ω loss less line connects a signal of 50 kHz to a load of 140Ω . The load power is 75mW. Calculate
 - i) Voltage Reflection coefficient
- ii) VSWR,
- iii) Position of V_{Max} , I_{max} , V_{min} and I_{min}
- 7. a) A transmission line of length 70 meters is terminated in an impedance of $Z_R = 125 + j48$. If the frequency is 3 MHz and the characteristic impedance is 230 Ω , find the sending end impedance using Smith chart, explaining the procedure.
 - b) What is meant by inductive loading? With the help of suitable expressions explain the advantages of loading and also discuss the disadvantages.
- a) Define the Brewster angle and derive an expression for Brewster angle when a wave is parallely polarized.
 - b) A plane wave traveling in a medium of $\varepsilon_r = 1$; $\mu_r = 1$ has an electric field intensity of 200 x $\sqrt{\pi}$ V/m. Determine the energy density in the magnetic field and also the total energy density.

SET - 2

II B. Tech II Semester Supplementary Examinations January – 2014 ELECTRO MAGNETIC WAVES AND TRANSMISSION LINES

(Com. to ECE, EIE)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. a) Derive the expression for electric field intensity **E** considering the surface charge distribution.
 - b) The finite sheet $0 \le x \le 1$, $0 \le y \le 1$ on the z = 0 plane has a charge density $\rho_s = xy(x^2+y^2+25)^{3/2}$ nC/m². Find: i) Total charge on sheet ii) The electric field at (0,0,5) iii) The force experienced by a -1mC charge located at (0,0,5)
- 2. a) Prove that the energy stored in an inductor is given by $W_L = 1/2 L I^2$.
 - b) If the magnetic field is $H = (0.01/\mu_0) a_x A/m$, what is the force on a charge of 1.0 pC moving with a velocity of $10^6 a_x m/s$.
- 3. a) Derive the equation of continuity for time varying fields.
 - b) A Parallel plate capacitor with a plate area of 5cm² and plate separation of 3mm has a voltage 50 sin 10^3 t V applied to its plates. Calculate the displacement current assuming $\varepsilon = 2 \varepsilon_0$.
- 4. a) Derive the Helmholtz wave equation from the fundamentals and determine the *Loss tangent*. What is the significance of the *loss tangent*?
 - b) A lossy dielectric has an intrinsic impedance of $200 \angle 30^{0} \Omega$ at a particular radian frequency ω . If, at that frequency, the plane wave propagating through the dielectric has the magnitude field component $\mathbf{H} = 10 e^{-\alpha x} \cos(\omega t 0.5x) a_{y}$ A/m Find \mathbf{E} and α . Determine the skin depth.
- 5. a) Discuss the nature of variation of wave impedances for TE, TM and TEM waves with frequency in a parallel plane wave guide.
 - b) Define and derive the equations for phase and group velocities in a parallel plane guide. Explain on which factors these will depend.
- 6. a) Explain the significance of pointing vector and the pointing theorem.
 - b) A plane wave traveling in a medium of $\epsilon_r = 1$; $\mu_r = 1$ has an electric field intensity of $100 \times \sqrt{\pi}$ V/m. Determine the energy density in the magnetic field and also the total energy density.
- 7. a) Draw the equivalent circuits of the transmission lines when
 - i) length of the transmission line, $L < \lambda/4$, with shorted load
 - ii) when L < $\lambda/4$, with open end
 - iii) $L = \lambda/4$

Code No: R22042

- b) Find out VSWR if i) $Z_0 = 200\Omega$; $R_L = 80\Omega$
- ii) when $Z_0 = 80\Omega$; $R_L = 200\Omega$
- 3. a) What is single stub matching? How is it used in impedance matching? Find the location of the stub with respect to the load under matched conditions.
 - b) A certain low loss line has a characteristic impedance of 400Ω . Determine the standing wave ratio with the following receiving end impedance.

i) $Z_R = 70 + j0.0\Omega$

ii) $Z_R = 800 + j0.0\Omega$

iii) $Z_R = 650 - j475\Omega$

1"1'11'1"1"1"

II B. Tech II Semester Supplementary Examinations January – 2014 ELECTRO MAGNETIC WAVES AND TRANSMISSION LINES

(Com. to ECE, EIE)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions All Questions carry **Equal** Marks

- 1. a) Prove $J = \rho_{\nu}V$ from fundamentals.
 - b) Find out electric flux density in free space if the electric field, $E = 6a_x 2a_y + 3a_z$, V/m also find ρ_v .
- 2. a) Mention some applications of magneto static fields.
 - b) A toroid of circular cross section whose center is at origin and the axis the same as the z-axis has 1000 turns with ρ_o (mean radius) = 10 cm, a(radius of the cross circular section) = 1cm. If the toroid carries a 100mA current, find |**H**| at
 - i) (3 cm, -4 cm, 0)
- ii) (6cm, 9cm, 0)
- 3. a) Derive and explain the Maxwell's equations in point form and integral form.
 - b) Given the conduction current density in a lossy dielectric as $Jc = 0.02\sin 10^9 t$ (A/m²). Find the displacement current density if $\sigma = 10^3$ S/m and $\varepsilon_r = 6.5$?
- 4. a) State and prove the Poynting theorem from the fundamentals.
 - b) A uniform plane wave propagating in a medium has $E = 2e^{-\alpha z}\sin{(10^8t-\beta z)a_y}$ V/m If the medium is characterized by $\varepsilon_r = 1$, $\mu_r = 20$ and $\sigma = 3$ S/m, find α , β and **H**.
- 5. a) Explain the significance of TEM wave in a parallel plane guide and derive the expression for the attenuation factor for TEM waves.
 - b) Explain and sketch the nature of variations of attenuation with frequency in a parallel plane wave guide for TE, TM and TEM waves.
- 6. a) Define the following:
 - i) loss tangent ii) Distinguish between conductors and Dielectrics
 - b) A good conductor is planar in form and it carries a uniform plane wave that has a wave length of 0.3 mm and a velocity of 3 x 10⁵ m/s assuming the conductor is non-magnetic determine the frequency and the conductivity.
- a) What is distortion less line? Determine the condition for distortionlessness and minimum attenuation.
 - b) A certain transmission line 2 m long operating at $\omega = 10^6$ rad/s has $\alpha = 8$ dB/m. $\beta = 1$ rad/m and $Z_0 = 60 + j40\Omega$. If the line is connected to a source of $10 \angle 0^0$ V, $Z_g = 40\Omega$ (Z_g source impedance) and terminated by a load of $20 + j50\Omega$, determine
 - i) The input impedance
- ii) The sending-end current
- 8. a) Explain the working principle of quarter-wave transformer.
 - b) A loss less transmission line with $Z_0 = 50\Omega$ is 30 m long and operates at 2MHz. The line is terminated with a load $Z_L = 60 + j40\Omega$. If velocity u = 0.6c (where "c" is the free space velocity) on the line, find the following using smith chart
 - i) The reflection coefficient
- ii) The standing wave ratio
- iii) input impedance

SET - 4 Code No: R22042

II B. Tech II Semester Supplementary Examinations January – 2014 ELECTRO MAGNETIC WAVES AND TRANSMISSION LINES

(Com. to ECE, EIE)

Time: 3 hours Max. Marks: 75

Answer any **FIVE** Questions All Questions carry **Equal** Marks

1. a) State Guass law. Explain any two applications of Guass law in detail.

- b) The point charges -1nC,4nC, and 3nC are located at (0,0,0), (0,0,1) and (1,0,0) respectively. Find the energy in the system.
- a) State Maxwell's equations for magneto static fields.
 - b) Show that the magnetic field due to a finite current element along Z axis at a point P, r distance away along y- axis is given by $H = (I/4\pi r)(\sin \alpha_1 - \sin \alpha_2).a_{\phi}$, where I is the current through the conductor, α_1 , and α_2 are the angles made by the tips of the conductor element at P?
- 3. a) Explain Faraday's laws for time-varying fields.
 - b) Verify the displacement current in the parallel plate capacitor is the same as the conduction current in the connecting wires.
- Prove that under the condition of no reflection at an interface, the sum of the Brewster angle and the angle of refraction is $\pi/2$ for parallel polarization for the case of reflection by a perfect conductor under oblique incidence, with neat sketches.
- a) Derive the relation $\lambda = (\lambda_c \lambda_g) / ((\lambda_c^2 + \lambda_g^2))$ where λ is the free space wavelength, λ_g is the wave length measured in guide and λ_c is the cut-off wave length.
 - b) Explain the impossibility of TEM mode propagation in the wave guides.
- 6. a) Explain the principal of impedance matching with quarter-wave transformer.
 - b) A 50Ω loss less line connects a signal of 50 kHz to a load of 140Ω . The load power is 75mW. Calculate
 - i) Voltage Reflection coefficient ii) VSWR,
- iii) Position of V_{Max} , I_{max} , V_{min} and I_{min}
- a) What is distortion less line? Determine the condition for distortionlessness and minimum attenuation.
 - b) A certain transmission line 2 m long operating at $\omega = 10^6$ rad/s has $\alpha = 8$ dB/m. $\beta = 1$ rad/m and $Z_0 = 60 + j40\Omega$. If the line is connected to a source of $10 \angle 0^0 V$, $Z_g = 40\Omega$ (Z_g source impedance) and terminated by a load of $20 + j50\Omega$, determine
 - i) The input impedance
- ii) The sending-end current
- 8. a) What is single stub matching? How is it used in impedance matching? Find the location of the stub with respect to the load under matched conditions.
 - b) A certain low loss line has a characteristic impedance of 400Ω . Determine the standing wave ratio with the following receiving end impedance.
 - i) $Z_R = 70 + j0.0\Omega$
- ii) $Z_R = 800 + j0.0\Omega$ iii) $Z_R = 650 j475\Omega$