I B.Tech II Semester Supplementary Examinations, August 2014 MATHEMATICAL METHODS

(Common to Mechanical Engineering, Electronics \& Communication Engineering, Chemical Engineering, Bio-Medical Engineering, Information
Technology, Electronics \& Computer Engineering, Mining and Petroliem Technology)
Time: 3 hours
Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Find rank of $A=\left[\begin{array}{cccc}2 & 1 & 3 & 1 \\ 0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6\end{array}\right]$ by reducing it to Normal Form
(b) Solve by Gauss seidal method, $x+4 y+15 z=24, x+12 y+z=26,10 x+y-2 z=10$
2. Find Eigen vectors of $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$
3. Reduce the quadratic form $7 x^{2}+6 y^{2}+5 z^{2}-4 x y-4 y z$ to canonical from by diagonlzation. Also find the nature, index and signature and the linear transformation.
4. (a) Solve the equation $x^{3}+2 x^{2}+0.4=0$ using Newton's -Raphson's Method upto three decimal places.
(b) Show that the iteration scheme $\phi(x)=\frac{-1}{x^{2}-3}$ converges and hence find a real root of $f(x)=x^{3}-3 x+1=0$ near $x=3$.
5. (a) Use gauss forward interpolation formula to estimate $f(32)$, given $f(25)=$ $0.2707, f(30)=0.3027, f(35)=0.3386, f(40)=0.3794$.
(b) Find the interpolating polynomial $\mathrm{f}(\mathrm{x})$ from the table given below.

x	0	1	4	5
$\mathrm{f}(\mathrm{x})$	4	3	24	39

(a) The velocity v of a particle moving in a straight line covers a distance at time t . They are related as shown in the following Table. Find $\mathrm{v}(\mathrm{x})$ at $\mathrm{x}=10$ and $\mathrm{x}=15$.

x	0	10	20	30	40
v	45	60	65	54	42

(b) Find the area bounded by the cure $y=x^{3}-x+1, x-$ axis between $x=0$ and $\mathrm{x}=1.2$ by using
(i) Trapezoidal Rule (ii) Simpson' $1 / 3$ rule.
7. (a) Solve $y^{1}=-x y^{2}, y(o)=2$ by modified Euler's method and hence find $y(o .1)$, $y(0.2)$
(b) Solve $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}, y(0)=1$ by fourth order R-K method and hence find $\mathrm{y}(\mathrm{o} .2)$, $\mathrm{y}(\mathrm{o} .4)$
$[8+7]$
8. (a) Fit a least square parabola $y=a+b x+c x^{2}$ to the data $(-1,2),(0,1),(1,4)$
(b) By the method of least squares fit a straight line to the following data

x	5	10	15	15	20
y	15	19	23	26	30

I B.Tech II Semester Supplementary Examinations, August 2014 MATHEMATICAL METHODS

(Common to Mechanical Engineering, Electronics \& Communication Engineering, Chemical Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Mining and Petroliem Technology)
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Using Echelon form, find rank of $A=\left[\begin{array}{cccc}1 & 2 & 1 & 0 \\ -2 & 4 & 3 & 0 \\ 1 & 0 & 2 & 8\end{array}\right]$
(b) Solve system of equations $x+y+z=3,2 x+3 y+2 z=7,4 x+2 y+3 z=9$, using Gauss elimination method.
2. Verify Cayley - Hamilton theorem and find $A=\left[\begin{array}{ccc}1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1\end{array}\right]$
3. (a) Define quadratic form, rank and signature. Write the symmetric matrix corresponding to the quadratic form $x_{1} x_{3}+x_{2} x_{3}+x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{4}+x_{3} x_{4}$.
(b) Discuss the nature of the quadratic form $x^{2}-y^{2}+4 z^{2}+4 x y+6 x z+2 y z[7+8]$
4. (a) Using Newton-Raphson's Method, find a positive root of $\operatorname{Cosx}-\mathrm{xe}^{x}=0$
(b) Find a real root of $f(x)=x+\tan x-1=0$ in the interval $(0,0.5)$ by using bisection method.
5. The following table gives the population of a town during the last six censuses. Estimate, using Newton's interpolation formula, the increase in the population during the period 1986, to 1988.

year	1911	1921	1931	1941	1951	1961
Population (in thousands)	12	15	20	27	39	52

(a) Compute $f^{\prime}(1)$ using the given data:

X	1.0	1.5	2.0	2.5	3.0
$\mathrm{f}(\mathrm{x})$	27	106.75	324	783.75	1621

(b) Using Simpson's $3 / 8^{\text {th }}$ rule evaluate $\int_{0}^{6} \frac{d x}{1+x^{2}}$ by dividing the range into 6 equal parts
7. (a) Solve $y^{1}=3 x^{2}+1$ by Euler's method and find y at $x=2$ by taking $h=0.5$
(b) Solve by fourth order R-K method $y^{1}=x-y, y(1)=0.4$ and hence find $y(1.2)$
8. (a) Fit a second degree polynomial to the following data by the method of least squares

x	0	1	2	3	4
y	1	1.8	1.3	2.5	6.3

(b) Fit a straight line of the form $y=a+b x$ to the following data

x	0	5	10	15	20	25
y	12	15	17	22	24	30

I B.Tech II Semester Supplementary Examinations, August 2014 MATHEMATICAL METHODS
(Common to Mechanical Engineering, Electronics \& Communication Engineering, Chemical Engineering, Bio-Medical Engineering, Information
Technology, Electronics \& Computer Engineering, Mining and Petroliem Technology)

Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find rank of matrix using Echelon form $A=\left[\begin{array}{cccc}1 & 2 & -4 & 5 \\ 2 & -1 & 3 & 6 \\ 8 & 1 & 9 & 7\end{array}\right]$
(b) Solve the equations using Gauss Jordan method $\mathrm{x}+5 \mathrm{y}+\mathrm{z}=9, \quad 2 \mathrm{x}+\mathrm{y}+3 \mathrm{z}=12, \quad 3 \mathrm{x}+\mathrm{y}+4 \mathrm{z}=16$
2. Verify Cayley - Hamilton theorem and find A if $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$
3. (a) Define quadratic form, rank and signature. Write the symmetric matrix corresponding to the quadratic form $x_{1} x_{3}+x_{2} x_{3}+x_{1} x_{3}+x_{1} x_{4}+x_{2} x_{4}+x_{3} x_{4}$.
(b) Discuss the nature of the quadratic form $x^{2}-y^{2}+4 z^{2}+4 x y+6 x z+2 y z[7+8]$
4. (a) Solve the equation $x^{3}+2 x^{2}+0.4=0$ using Newton's -Raphson's Method upto three decimal places.
(b) Find a real rootof $x=e^{-x}$, using Bisection method up to four iterations.
5. (a) Find the value of y from the following data at $\mathrm{x}=0.47$

$X: X$	0	1	2	3	4	5
$Y:$	1	2	4	7	11	16

(b) Use Lagrange's interpolation formula, find $\mathrm{f}(4)$ from the following data.

X	1	2	5	6	9
$\mathrm{Y}=\mathrm{f}(\mathrm{x})$	2	8	17	20	35

6. (a) For the function $y=f(x)$ given by the following Table, find y^{\prime} at $\mathrm{x}=0.04$ using the Bessel's formula.

x	0.01	0.02	0.03	0.04	0.05	0.06
y	0.1023	0.1047	0.1071	0.1096	0.1122	0.1148

(b) Evaluate $\int_{0}^{4} e^{1 / x} d x$ by using the Simpson's $3 / 8^{\text {th }}$ rule, by dividing the interval into 3 equal parts.

$$
[8+7]
$$

7. (a)Solve $y^{1}=y+e^{x}, y(o)=0$ by modified Euler's method and find $y(? ?), y(? ?)$
(b) Solve $\mathrm{y}^{1}=-\mathrm{xy}^{2}, \mathrm{y}(\mathrm{o})=2, \mathrm{~h}=0.2$ by R-K method and hence find $\mathrm{y}(\mathrm{o} .2), \mathrm{y}(\mathrm{o} .4)$
8. (a) Find the best fit of the type $y=a e^{b x}$ to the data by the method of least squares

x	1	5	7	9	12
y	10	15	12	15	21

(b) Obtain the relation of the form $\mathrm{y}=\mathrm{ab}^{x}$ to the following data by the method of least squares

x	2	3	4	5	6
y	8.3	15.4	33.1	65.2	127.4

I B.Tech II Semester Supplementary Examinations, August 2014 MATHEMATICAL METHODS

(Common to Mechanical Engineering, Electronics \& Communication Engineering, Chemical Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Mining and Petroliem Technology)
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find rank of a Matrix using Echelon form where $A=\left[\begin{array}{cccc}1 & -1 & 2 & 0 \\ 0 & 1 & 2 & 1 \\ 5 & 3 & 14 & 4\end{array}\right]$
(b) Show that equations $\mathrm{x}+\mathrm{y}+\mathrm{z}=6, \mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=14 \mathrm{x}+4 \mathrm{y}+7 \mathrm{z}=30$ are consistent and solve them
2. Verify Cayley - Hamilton theorem and find A^{4} if $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & 1 & -2 \\ 2 & -2 & 1\end{array}\right]$
3. Find the transformation which will transform $4 x^{2}+3 y^{2}+z^{2}-8 x y-6 y z+4 z x$ into a sum of square and find the reduced from
4. (a) Using Newton-Raphson's method find the square root of a number and hence find the square root of 24 .
(b) Find a real root of the equation $\mathrm{x}=\mathrm{e}^{-x}$, using Bisection method $[8+7]$
5. (a) Find the value of y from the following data at $\mathrm{x}=0.47$

$\mathrm{X}:$	0	1	2	3	4	5
$\mathrm{Y}:$		1	2	4	7	11

(b) Use Lagrange's interpolation formula, find $\mathrm{f}(4)$ from the following data.

x	1	2	5	6	9
$x-f(x)$	2	8	17	20	35

6. (a) From the following data find $\mathrm{f}{ }^{\prime}(0)$

x	0	1	2	3	4	5
$\mathrm{f}(\mathrm{x})$	43	40	38	42	45	50

(b) By considering 4 strips, find the value of $\int_{3}^{7} x^{2} \log x d x$
7. (a) Solve $\mathrm{y}^{1}=\mathrm{xy}^{1 / 3}, \mathrm{y}(1)=1$ by Taylor series method and find $\mathrm{y}(1.1), \mathrm{y}(1.2)$
(b) Find an approximate value of y for $x=0.1,0.2$ if $y^{1}=x+y$ and $y(1)=1$ by Picard's method and compare the solution with exact solution.
8. (a) Fit a second degree polynomial to the following data by the method of least squares

x	0	1	2	3	4
y	1	1.8	1.3	2.5	6.3

(b) Fit a straight line of the form $\mathrm{y}=\mathrm{a}+\mathrm{bx}$ to the following data

x	0	5	10	15	20	25
y	12	15	17	22	24	30

