I B.Tech I Semester Supplementary Examinations, Feb/Mar 2014 MATHEMATICAL METHODS
(Common to Civil Engineering, Electrical \& Electronics Engineering, Computer Science \& Engineering, Electronics \& Instrumentation Engineering, Aeronautical Engineering, Bio-Technology and Automobile Engineering)
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find value of K if rank of A is 3 , if $A=\left[\begin{array}{cccc}1 & 2 & -1 & 3 \\ 4 & 1 & 2 & 1 \\ 3 & -1 & 1 & 2 \\ 1 & 2 & 0 & K\end{array}\right]$
(b) Solve by Gauss elimination method $10 \mathrm{x}+\mathrm{y}+\mathrm{z}=12 ; 2 \mathrm{x}+10 \mathrm{y}+\mathrm{z}=13 ; \mathrm{x}+\mathrm{y}+5 \mathrm{z}=7$; $[7+8]$
2. (a) Prove that the Eigen values of a triangular matrix are diagonal elements of the matrix
(b) Find eigen vectors of $B=2 A^{2}-A+3 \mathrm{~b}$ when $A=\left[\begin{array}{cc}8 & -4 \\ 2 & 2\end{array}\right] \quad[5+10]$
3. Define the nature of the quadratic form. Identify the nature of the quadratic form $x_{1}^{2}+4 x_{2}^{2}+x_{3}^{2}-4 x_{1} x_{2}+2 x_{1} x_{3}-4 x_{2} x_{3}$
4. (a) Evaluate the real root of the equation $x^{2}-9 x+1=0$ by Bisection method
(b) Compute the root of the equation $x^{3}-x^{2}-1=0$ by the method of false position [8+7]
5. (a) Compute the approximate value of e^{-x} when $\mathrm{x}=1.7489$ from the following table using the Gauss forward interpolation formula.

x	1.72	1.73	1.74	1.75	1.76	1.77	1.78
e^{-x}	0.179066	0.177284	0.175520	0.173774	0.172045	0.170333	0.168638

(b) Find the Parabola passing through the points $(0,1),(1,3)$ and (3,5), Using Lagrange's Interpolation formula. $[8+7]$
6. (a) Find the first and second derivatives of the function tabulated below at the point $\mathrm{x}=1.5$.

X	1.5	2.0	2.5	3.0	3.5	4.0
Y	3.375	7.0	13.625	24.0	38.875	59.0

(b) Evaluate $\int_{0.6}^{2.0} y d x$ using Trapizoidal, Simpsons $1 / 3$ and Simpsons $3 / 8$ rules.

X	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
y	1.23	1.58	2.03	4.32	6.25	8.38	10.23	12.45

7. (a) Solve $y^{1}=3 x+y / 2, y(0)=1$ by Taylor series method and hence find $y(0.1)$, $\mathrm{y}(0.2)$
(b) Solve the equation $\frac{d y}{d x}=x y+1, \mathrm{y}(0)=1$ by Picard's method and hence find $\mathrm{y}(0.1)$
$[8+7]$
8. (a) Fit a least square parabola $y=a+b x+c x^{2}$ to the following data

x	-3	-2	-1	0	1	2	3
y	4.63	2.11	0.67	0.09	0.63	2.15	4.58

(b) Fit a straight line of the form $\mathrm{y}=\mathrm{a}+\mathrm{bx}$ to the following data

x	1	2	4	5	6	8	9
y	2	5	7	10	12	15	19

I B.Tech I Semester Supplementary Examinations, Feb/Mar 2014 MATHEMATICAL METHODS
(Common to Civil Engineering, Electrical \& Electronics Engineering, Computer Science \& Engineering, Electronics \& Instrumentation Engineering, Aeronautical Engineering, Bio-Technology and Automobile Engineering)
Time: 3 hours
Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Find rank of $A=\left[\begin{array}{cccc}2 & 1 & 3 & 1 \\ 0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6\end{array}\right]$ using Normal Form
(b) Solve by Gauss seidal method $x+4 y+15 z=24, x+12 y+z=26,10 x+y-2 z=10$
2. (a) Find Eigen Vectors of $\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$
(b) If λ is an Eigen value of A then prove that $\frac{|A|}{\lambda}$ is an Eigen value of Adj. A
3. Find the rank, signature and index of the quadratic form $2 x_{1}^{2}+x_{2}^{2}-3 x_{3}^{2}+12 x_{1} x_{2}-$ $4 x_{1} x_{3}-8 x_{2} x_{3}$ by reducing it to normal form .Also write the linear transformation which brings about the normal reduction
4. (a) Using Newton- Raphson's method compute $\sqrt{41}$ correct to four decimal places.
(b) Find a reat root of the equation $e^{x}=x+2$ in the interval [1, 1.4] using bisection method.
5. (a) Apply Gauss backward interpolation formula to find y when $\mathrm{x}=26$ form the following table:

X	20	24	28	32
Y	2854	3162	3544	3992

(b) Using Lagrange's interpolation formula, find the value of y when $\mathrm{x}=2$ from the following data:

x	1	3	4	6
y	4	40	85	259

6. (a) Find the value of $f^{\prime}(x)$ at $\mathrm{x}=0.01$ from the following table using Bessel's formula.

x	0.01	0.02	0.03	0.04	0.05	0.06
$\mathrm{f}(\mathrm{x})$	0.1023	0.1047	0.1071	0.1096	0.1122	0.1148

(b) Find the area bounded by the curve $\mathrm{y}=e^{-\frac{x^{2}}{2}}, \mathrm{x}$ - axis between $\mathrm{x}=0$ and x $=3$ by using Simpson's $3 / 8$ rule.
7. (a) Solve $y^{1}=x-y, y(0)=1$ by modified Euler's method and find $y(0.1), y(0.2)$
(b) Apply third order R-K method to find $\mathrm{y}(0.25)$ where $\mathrm{y}^{1}=1+\mathrm{xy}, \mathrm{y}(0)=1[8+7]$
8. (a) Fit a power curve $\mathrm{y}=\mathrm{ax}^{b}$ to the following data

x	5	6	7	8	9	10
y	133	55	23	7	2	2

(b) Fit a curve of the type $y=a+b x+c x^{2}$ to the following data

x	0	1	2	3	4	5	6
y	14	18	23	29	36	40	46

I B.Tech I Semester Supplementary Examinations, Feb/Mar 2014 MATHEMATICAL METHODS
(Common to Civil Engineering, Electrical \& Electronics Engineering, Computer Science \& Engineering, Electronics \& Instrumentation Engineering, Aeronautical Engineering, Bio-Technology and Automobile Engineering)
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find rank using Normal Form $A=\left[\begin{array}{llll}1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5\end{array}\right]$
(b) Solve Homogeneous equations $\mathrm{x}_{1}+2 \mathrm{x}_{2}+3 \mathrm{x}_{3}=0,2 \mathrm{x}_{1}+3 \mathrm{x}_{2}+\mathrm{x}_{3}=0$, $4 \mathrm{x}_{1}+5 \mathrm{x}_{2}+4 \mathrm{x}_{3}=0, \mathrm{X}_{1}+\mathrm{x}_{2}-2 \mathrm{x}_{3}=0$
2. (a)Find Eigen values and Eigen vectors of
(b) If λ is an Eigen value of A then prove that λ^{-1} is an Eigen value of A^{-1} if it exists
3. Find the rank, signature and index of the quadratic form $2 x_{1}^{2}+x_{2}^{2}-3 x_{3}^{2}+12 x_{1} x_{2}-$ $4 x_{1} x_{3}-8 x_{2} x_{3}$ by reducing it to normal form .Also write the linear transformation which brings about the nommal reduction
4. (a) Find out square root of 25 given $\mathrm{x}_{0}=2, \mathrm{x}_{1}=7$ using Bisection method
(b) Solve the equation $x^{3}+2 x^{2}+10 x=20$ by iteration method $[8+7]$
5. (a) Use gauss forward interpolation formula to estimate $f(32)$, given $f(25)=$ $0.2707, f(30)=0.3027, f(35)=0.3386, f(40)=0.3794$.
(b) Find the interpolating polynomial $\mathrm{f}(\mathrm{x})$ from the table given below.

x	0	1	4	5
$f(x)$	4	3	24	39

(a) Using the table below, find $f^{\prime}(0)$

x	0	2	3	4	7	9
$\mathrm{f}(\mathrm{x})$	4	26	58	110	460	920

(b) Evaluate $\int_{0}^{1} \sqrt{1+x^{3}}$ dx taking $\mathrm{h}=0.1$ using Simpson's $3 / 8^{\text {th }}$ rule. $[8+7]$
7. (a) Solve $y^{1}=x+y$ subject to the condition $y(0)=1$ by Taylor series method and hence find $\mathrm{y}(0.2), \mathrm{y}(0.4)$
(b) Solve $\mathrm{y}^{1}=\mathrm{x}-\mathrm{y}, \mathrm{y}(0)=1$ by Picard's method and hence find y at $\mathrm{x}=0.2 \quad[8+7]$
8. (a) Fit a curve of the type $y=a+b x+\mathrm{cx}^{2}$ to the following data

x	10	15	20	25	30	35
y	35.3	32.4	29.2	26.1	23.2	20.5

(b) Fit a curve of the type $\mathrm{y}=\mathrm{ab}^{x}$ to the following data by the method of least squares

x	1	2	5	10	20	30	40	50
Y	98.2	91.7	81.3	64	36.4	32.6	7.1	11.3

I B.Tech I Semester Supplementary Examinations, Feb/Mar 2014 MATHEMATICAL METHODS
(Common to Civil Engineering, Electrical \& Electronics Engineering, Computer Science \& Engineering, Electronics \& Instrumentation Engineering, Aeronautical Engineering, Bio-Technology and Automobile Engineering)
Time: 3 hours
Max Marks: 75

Answer any FIVE Questions

All Questions carry equal marks

1. (a) Find rank of matrix using Normal form $A=\left[\begin{array}{cccc}1 & 2 & 3 & -2 \\ 2 & -2 & 1 & 3 \\ 3 & 0 & 4 & 1\end{array}\right]$
(b) Solve system of equations, if consistent $2 x-y-z=2, x+2 y+z=2,4 x-7 y-5 z=2$ $[7+8]$
2. Verify Cayley - Hamilton theorem and find $A=\left[\begin{array}{ccc}2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$
3. Reduce the quadratic form to canonical from by an orthogonal reduction and state the nature of the quadratic form $5 x^{2}+26 y^{2}+6 x y+4 y z+14 z x$. Also find its rank signature and index.
4. (a) Using Newton-Raphson's method find the square root of a number and hence find the square root of 24 .
(b) Find a real root of the equation $\mathrm{x}=\mathrm{e}^{-x}$, using Bisection method [8+7]
5. (a) Apply Gauss's forward formula to find $\mathrm{f}(\mathrm{x})$ at $\mathrm{x}=3.5$ from the table below.

X	2	3	4	5
$\mathrm{~F}(\mathrm{x})$	2.626	3.454	4.784	6.986

(b) Find $\sin 45^{\circ}$ using Gauss's backward interpolation formula given that $\sin 20^{\circ}$ $=0.342, \sin 30^{\circ}=0.502, \sin 40^{\circ}=0.642, \sin 50^{\circ}=0.766, \sin 60^{\circ}=0.866, \sin$ $70^{0}=0.939, \sin 80^{\circ}=0.984$.
(a) Given the following table. Find $f^{\prime}(1)$ and $f^{\prime \prime}(3)$

x	0	2	4	6	8
$\mathrm{f}(\mathrm{x})$	7	13	43	145	367

(b) Find approximate value of $\int_{1}^{1.04} f(x) d x$ using the following table.

x	1	1.01	1.02	1.03	1.04
$\mathrm{f}(\mathrm{x})$	3.953	4.066	4.182	4.300	4.421

7. (a) Given that $\frac{d y}{d x}=\frac{\left(1+x^{2}\right) y^{2}}{2}, y(0)=1, y(0.1)=1.06, y(0.2)=1.12, y(0.3)=1.21$ then evaluate $\mathrm{y}(0.4)$ by Milne's predictor corrector method
(b) Solve $\frac{d y}{d x}=\frac{y-x}{y+x}, \mathrm{y}(0)=1$ estimate $\mathrm{y}(0.1)$ and $\mathrm{y}(0.2)$ using Euler's method in 5 steps
8. (a) Fit a least square parabola $y=a+b x+c x^{2}$ to the following data

x	1	2	3	4	5
y	5	12	25	44	69

(b) Fit a straight line of the form $y=a+b x$ to the following data

x	1	2	3	4	5
y	5	12	26	60	90

