I B.Tech II Semester Supplementary Examinations, August 2014 MATHEMATICS- II

(Common to Civil Engineering, Electrical \& Electronics Engineering, Mechanical Engineering, Electronics \& Communication Engineering, Computer Science \& Engineering, Chemical Engineering, Electronics \& Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)
Time: 3 hours
Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Find the Laplace transform of $\cos ^{3} 3 \mathrm{t}$
(b) Find the Laplace transform of $\mathrm{f}(\mathrm{t})=|t-1|+|t+1|, \mathrm{t} \geq 0$
2. (a) Find $L^{-1}\left[s^{2} /\left(s^{2}+4\right)\left(s^{2}+25\right)\right]$.
(b) Find $L^{-1}\left\{\tan ^{-1}(s+1)\right\}$.
3. (a)Find cosine series and sine series for the function $f(x)=x^{2}$ in $(0, \pi)$ find sum of the series $1 / 1^{2}-1 / 2^{2}+1 / 3^{2}+\ldots$.
(b) Find cosine series and sine series for the function $\mathrm{f}(\mathrm{x})=\pi$-x in $(0, \pi) \quad[8+7]$
4. Find the finite Fourier sine and cosine transform of $f(x)=\frac{\pi}{3}-x+\frac{x^{2}}{2 \pi}$ where $0<\mathrm{x}<\pi$
5. (a) Solve $x^{2} p+y^{2} q=x z$
(b) Solve $(3 y+2 z) p+(4 z-3 z) q=-(2 x+4 y)$
6. A homogenous rod of conducting material of length 100 cm has its ends kept at zero temperature and the temperature initially is $u(x, o)=\left\{\begin{array}{l}x ; \quad 0 \leq x \leq 5 \\ 100-x ; 50 \leq x \leq 100\end{array}\right.$ Find the temperature $u(x, t)$ at any time.

Find the inverse Z-transform of $\frac{z^{2}}{\left(z-\frac{1}{2}\right)\left(z-\frac{1}{4}\right)}$
(b) Evaluate $Z^{-1}\left(\frac{z}{z^{2}+11 z+24}\right)$.
8. (a) Evaluate $\int_{0}^{1} \mathrm{x}^{3} \sqrt{1-\mathrm{x}} d x$, using Beta and Gamma functions.
(b) Prove that $\int_{0}^{\infty} \mathrm{x}^{2 \mathrm{n}-1} e^{-a x^{2}} d x=\frac{\Gamma(n)}{2 a^{n}}, \mathrm{a}>0, \mathrm{n}>0$.

I B.Tech II Semester Supplementary Examinations, August 2014 MATHEMATICS- II
 (Common to Civil Engineering, Electrical \& Electronics Engineering, Mechanical Engineering, Electronics \& Communication Engineering, Computer Science \& Engineering, Chemical Engineering, Electronics \& Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)

Time: 3 hours
Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Find the Laplace transform of
(i) $\cos (a t+b)$
(ii) $\sin (a t-b)$
(b) Find the Laplace transform of (i) $e^{4 t} \cos 4 t$
(ii) $\mathrm{t}^{4} \mathrm{e}^{5 t}$
2. (a) Find $L^{-1}\left\{\frac{\left(s^{2}-1\right)}{\left(s^{2}+1\right)^{2}}\right\}$.
(b) Using Laplace transforms, solve($\left.D^{2}+1\right) x=t \cos 2 t$, given that $x=\frac{d x}{d t}=0$ at $t=0$.
 $[7+8]$
3. Find the half range Fourier cosine series of $f(x)=\sin (\pi x / L)$ in the range $o<x<L$
4. (a) Find the fourier transform of $f(x)$ defined by $f(x)=x,|x|=a=0,|x|>a$
(b) Find the fourier transform of $f(x)$ defined by $f(x)=\cos x,|x|=a, f(x)=0$, $|x|=a \rightarrow 0$
5. (a) Solve $p^{2}+q^{2}=x^{2}+y^{2}$

$$
\begin{equation*}
\text { (b) Solve yz } p-x z q=x y \tag{8+7}
\end{equation*}
$$

100 cm long with insulated sides has its ends kept at $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ respectively until steady state conditions prevail. Then the temperature $0^{\circ} \mathrm{C}$ is raised to $30^{\circ} \mathrm{C}$ and that of $100^{\circ} \mathrm{C}$ is lowered to $60^{\circ} \mathrm{c}$. Find the subsequent temperature distribution.
7. (a) Find the inverse Z-transform of $\frac{z^{2}}{\left(z-\frac{1}{2}\right)\left(z-\frac{1}{4}\right)}$
(b) Evaluate $Z^{-1}\left(\frac{z}{z^{2}+11 z+24}\right)$.
8. (a) Prove that $\Gamma(m) \Gamma\left(m+\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2^{2 m-1}} \Gamma(2 m)$
(b) Prove that $\int_{0}^{\infty} \mathrm{x}^{\mathrm{n}} e^{-a^{2} x^{2}} d x=\frac{1}{2 a^{n+1}} \Gamma\left(\frac{n+1}{2}\right), \mathrm{n}>-1$

I B.Tech II Semester Supplementary Examinations, August 2014 MATHEMATICS- II
 (Common to Civil Engineering, Electrical \& Electronics Engineering, Mechanical Engineering, Electronics \& Communication Engineering, Computer Science \& Engineering, Chemical Engineering, Electronics \& Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)

Time: 3 hours
Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Find the Laplace transform of
(i) $\cosh (a t+b)$
(ii) $\operatorname{sint}(\mathrm{at}-\mathrm{b})$
(b) Find the Laplace transform of (i) $e^{4 t} \cos 4 t$
(ii) $t^{4} e^{5 t}$
2. (a) Find $L^{-1}\left[\log \left(\frac{s^{2}+1}{s^{2}+9}\right)\right]$.
(b) Find inverse Laplace transform of $\frac{1}{5\left(s^{2}-a^{2}\right)}$
3. (a) Express $\mathrm{f}(\mathrm{x})=\mathrm{x}$ as a half range Fourier cosine series in $(-\pi, \pi)$
(b) Express $f(x)=x^{2}$ as Founier series in $(-\pi, \pi)$
4. Find the fourier cosine and sine transform of $f(x)$ defined by $f(x)=e^{-a x} / x$ and hence evaluate that $\int_{0}^{\infty} \frac{e^{-a x}-e^{-b x} \operatorname{sin~sx~dx}}{x}$
5. (a) Form the partial differential equation by eliminating arbitrary function from $f\left(x^{2}+y^{2}, x^{2}-z^{2}\right)=0$
(b) Solve $2 \mathrm{p}+3 \mathrm{q}=1$

The ends A and B of a rod 20 cm long have the temperature at $30^{\circ} \mathrm{C}$ and $80^{\circ} \mathrm{C}$ until steady states prevail. The temperatures of the ends are changed at $40^{\circ} \mathrm{C}$ and $60^{\circ} \mathrm{C}$ respectively. Find the temperature distribution in the rod at time t.
7. (a) Find the inverse Z-transform of $\frac{z^{2}}{\left(z-\frac{1}{2}\right)\left(z-\frac{1}{4}\right)}$
(b) Evaluate $Z^{-1}\left(\frac{z}{z^{2}+11 z+24}\right)$.
8. (a) Show that $\Gamma(n)=\frac{1}{n} \int_{0}^{\infty} e^{-x^{\frac{1}{n}}} d x, \mathrm{n}>0$
(b) Evaluate $\int_{0}^{1} x^{7}(1-x)^{5} d x$ using Beta and Gamma functions.

I B.Tech II Semester Supplementary Examinations, August 2014 MATHEMATICS- II
 (Common to Civil Engineering, Electrical \& Electronics Engineering, Mechanical Engineering, Electronics \& Communication Engineering, Computer Science \& Engineering, Chemical Engineering, Electronics \& Instrumentation Engineering, Bio-Medical Engineering, Information Technology, Electronics \& Computer Engineering, Aeronautical Engineering, Bio-Technology, Automobile Engineering, Mining and Petroliem Technology)

Time: 3 hours
Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Find $\mathrm{L}(\mathrm{t}(3 \sin 2 \mathrm{t}-2 \cos 2 \mathrm{t}))$
(b) Find $\mathrm{L}\left(\mathrm{t}^{2} \mathrm{e}^{-2 t}\right.$ cost $)$
2. (a) State and prove Convolution theorem for inverse Laplace transform
(b) Show that $f^{*} g=g^{*} f$ where $f(t)=t^{3}, g(t)=2 t$
3. The intensity of an alternating current after passing through a rectifier is given by $\mathrm{f}(\mathrm{x})=\mathrm{i}_{0} \sin \mathrm{x}$ for $0=\mathrm{x}=\pi, \mathrm{f}(\mathrm{x})=0$ for $\pi=\mathrm{x}=2 \pi$ where $\mathrm{i}_{0}=$ maximum current and the period is 2π. Express $f(x)$ as Founier series
4. Find the Fourier cosine and sine transform of $f(x)$ defined by $f(x)=e^{-a x} / x$ and hence evaluate that $\int_{0}^{\infty} \frac{e^{-a x}=e^{-b x} \text { sir sx dx }}{x}$
5. (a) Solve $p^{2}+q^{2}=x^{2}+y^{2}$
(b) Solve yz $p-x z a$

$$
[8+7]
$$

6. A tightly stretched string with fixed end points $\mathrm{x}=0$ and $\mathrm{x}=l$ is initially at rest in its equilibrium position. If it is vibrating by giving to each of its points a velocity $\lambda x(l-x)$ find the displacement of the string at any distance ' x ' from one end at any time t
(a) If $Z\left(\mathrm{u}_{\mathrm{n}}\right)=\bar{u}(z)$, then prove that $\mathrm{Z}\left(\mathrm{n} u_{n}\right)=-z \frac{d}{d z}[\bar{u}(z)]$
(b) Evaluate $Z^{-1}\left(\frac{z^{2}}{z^{2}-5 z+6}\right)$, using convolution theorem.
7. (a) Given $\int_{0}^{\infty} \frac{x^{n-1}}{1+x} d x=\frac{\pi}{\sin n \pi}$, show that $\Gamma(n) \Gamma(1-n)=\frac{\pi}{\sin n \pi}$ and deduce $\Gamma\left(\frac{1}{4}\right) \Gamma\left(\frac{3}{4}\right)$
(b) Prove that $\int_{0}^{\pi} 2[\sqrt{\tan \theta}+\sqrt{\sec \theta}] d \theta=\frac{1}{2} \Gamma\left(\frac{1}{4}\right)\left\{\Gamma\left(\frac{3}{4}\right)+\frac{\sqrt{\pi}}{\Gamma\left(\frac{3}{4}\right)}\right\}$
