Set No - 1

I B. Tech II Semester Regular Examinations August - 2014 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, Auto E, Min E, Pet E, Metal E)

Time: 3 hours Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B**Answering the question in **Part-A** is Compulsory,
Three Questions should be answered from **Part-B*******

PART-A

- 1.(i) Write iterative scheme to find the n^{th} root of a real number K(>0).
 - (ii) Find $\Delta \log f(x)$.
 - (iii) Find half range Fourier sine series of $f(x) = e^x$ in (0, 1).
 - (iv) Prove that $Z(\sinh nt) = \frac{z \sinh t}{z^2 2z \cosh t + 1}$
 - (v) Using Euler's method, find the value of y(0.5) (take h = 0.25) and compare with the exact solution of the equation y' = x + y, y(0) = 1
 - (vi) If F_p is complex Fourier transform of f(x), then find the complex Fourier transform of f(x) sin ax.

[3+3+3+3+5+5]

PART - B

- 2.(a) Using Newton-Raphson method find the root of the equation $x + log_{10}x = 3.375$ correct to four decimal places.
 - (b) The population of a town in the decimal census is given below. Estimate the population of a town for the year 1895

Year X	1971	1981	1991	2001	2011
Population Y	146	166	181	193	201

[8+8]

- 3.(a) Find positive root of $x^3 5x + 3 = 0$ using Regula falsi method up to 4 steps.
 - (b) Using Lagrange's interpolation formulae find the value of y (12) from the data

X	5	7	9	13
Y	11	13	18	27

[8+8]

- 4.(a) Solve $y' = x^2y + 1$, y(0)=1 using Taylors method up to 3^{rd} degree term and compute y(0.1).
 - (b) Find the fourier series of $f(x) = x \sin x$ in $(-\pi, \pi)$.

- Find half range cosine series of $f(x) = \begin{cases} 1, & 0 < x < \frac{\pi}{2} \\ -1, & \frac{\pi}{2} < x < \pi \end{cases}$. 5.(a)
 - Use Runge-Kutta 4th to compute y(1.25) given that $\frac{dy}{dx} = \frac{x^2 + y}{x}$, y(1) = 2 (b)

- Find Fourier transform $f(x) = \begin{cases} x & \text{if } |x| \le 1 \\ 0 & \text{if } |x| > 1 \end{cases}$. 6.(a)
 - (b) Find Z-transform of n aⁿ.

[8+8]

- Le the J, $u_I = I$, χ 7.(a)Find Fourier sine transform of e^{-x} and hence deduce the inversion formula.
 - Solve the difference equation $u_{n+2} u_n = 2^n$, $u_0 = 0$, $u_1 = 1$, using Z- transforms. (b)

Set No - 2

I B. Tech II Semester Regular Examinations August - 2014 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, Auto E, Min E, Pet E, Metal E)

Time: 3 hours Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B**Answering the question in **Part-A** is Compulsory,
Three Questions should be answered from **Part-B*******

PART-A

1.(i) Using bisection method find the first four approximations to the real root of $3x = e^x$.

(ii) Prove that
$$\Delta(\frac{1}{f(x)}) = \frac{-\Delta f(x)}{f(x)f(x+1)}$$
.

- (iii) If $Z(n^2) = \frac{z^2 + z}{(z-1)^3}$ find $Z(n^3)$.
- (iv) Find the Half range Fourier sine series of f(x) = |x| in (0, 1).
- (v) If y' = 2x y, y(1) = 3, find the solution, up to third degree term, using Picard's method.
- (vi) Prove $F[x^n f(x)] = (-i)^n \frac{d^n}{dp^n} [F(p)]$.

[3+3+3+3+5+5]

PART – B

- 2.(a) Using Newton Raphson method, find a root of the equation 2x- 3sinx = 5 near x = 5 correct to three decimal places.
 - (b) Given that f(6500) = 80.8084, f(6510) = 80.6846, f(6520) = 80.7456, f(6530) = 80.8084, find f(6526) using Gauss backward interpolation formula.

[8+8]

- 3.(a) Find a positive root of $2x = 3 + \cos x$ by using Newton-Raphson method correct to three decimal places. (Use Bisection method for the first approximation).
 - (b) Using Lagrange's Interpolation formula for the value of y(6) given the following table

	X	1	2.5	5	7
,	Y	2.25	4.13	7.25	9.0

[8+8]

- 4.(a) Solve y = y + x, y(0) = 1 using Picard's method up to third approximation and hence find the value of y(0.1).
 - (b) Find the Fourier expansion of $f(x) = x \cos x$, $0 < x < 2\pi$.

[8+8]

- 5.(a) Find half range cosine series of $f(x) = \begin{cases} 1, & 0 < x < 1 \\ -1, & 1 < x < 2 \end{cases}$.
 - (b) Find y(0.1) using 4^{th} order Runge-Kutta method given that $y' = x + x^2y$, y(0) = 1.

- 6.(a) Find the Fourier transform of $\frac{1}{\sqrt{|x|}}$.
 - (b) Find Z-transform of $n^2 e^{n\theta}$.

- 7.(a) Find Fourier cosine transform of $\frac{1}{1+x^2}$ and hence find Fourier sine transform of $\frac{x}{1+x^2}$.
 - (b) Solve y(n+2) + 3y(n+1) + 2y(n) = 0, y(0) = 0, y(1) = 1 using Z-Transform.

Page 2 of 2

Set No - 3

I B. Tech II Semester Regular Examinations August - 2014 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, Auto E, Min E, Pet E, Metal E)

Time: 3 hours Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B**Answering the question in **Part-A** is Compulsory,
Three Questions should be answered from **Part-B*******

PART-A

- 1.(i) Find reciprocal of a real number 19 using Regula falsi method.
 - (ii) Expand the shift operator E in terms of exponential function.
 - (iii) Employ Taylor's method to obtain the values of y(1.1) for the differential equation $y' = xy^{1/3}$, y(1) = 1.
 - (iv) A sinusoidal voltage $E \cos \omega t$ is passed through a half wave rectifier which clips the negative portion of the wave. Develop the resulting periodic function

$$u(t) = \begin{cases} 0, & -\frac{T}{2} < t < 0 \\ E \cos \omega t, & 0 < t < \frac{T}{2} \end{cases}, T = \frac{2\pi}{\omega} \text{ as Fourier series.}$$

- (v) Prove that $F_s \left[\frac{d}{dx} F(x) \right] = -pF_c(p)$
- (vi) Find the Z-transform of sin((n+1)t)

[3+3+3+5+3+5]

PART – B

- 2.(a) By using Regula-Falsi method for a real root of $xe^x = 2$ up to 4 stages.
- (b) Using a forward difference formula, find y(11) from the given table

X	1	6	11	16	21	26
Y	5	10	14	18	24	32

[8+8]

- 3.(a) Using Newton-Raphson formula, find the root of $e^x x^3 + \cos 25x = 0$ around x = 4.5 correct to 3 decimal places.
 - (b) Using Lagrange's Interpolation formula, find the value y(2) given the following table of values

Ī	X	1	1.1	1.4	1.8
Ī	Y	2	4	8	11

- 4.(a)
- Using Euler's method, solve for y (0.6) from y' = -2xy, y(0) = 1 using step size 0.2. Find the Fourier series of $f(x) = \begin{cases} 0, & -\pi < x < 0 \\ \frac{\pi}{4}, & 0 < x < \pi \end{cases}$. (b)

- Represent the function as Fourier cosine series $f(x) = \begin{cases} \frac{\pi}{2}, & 0 < x < \frac{\pi}{2} \\ \pi x, & \frac{\pi}{2} < x < \pi \end{cases}$. 5.(a)
 - (b) Use Runge-Kutta 4th order to compute y(1.2) for the equation $y' = \frac{x^2 + y}{x}$, y(1) = 2.
 - [8+8]

- Find the Fourier cosine transform of $\frac{e^{-ax}}{r}$. 6.(a)
 - (b) Find $Z^{-1} \left[\frac{8z z^3}{(4 z)^3} \right]$.

[8+8]

- f(x) = 0 Using Z-trank Find Fourier cosine transform of $f(x) = \begin{cases} x & \text{if } |x| \le a \\ 0 & \text{if } |x| > a \end{cases}$ 7.(a)
 - Solve $u_{n+2} 6u_{n+1} + 9u_n = 0$ using Z-transform. (b)

Set No - 4

I B. Tech II Semester Regular Examinations August - 2014 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to CE, ME, CSE, PCE, IT, Chem E, Aero E, Auto E, Min E, Pet E, Metal E)

Time: 3 hours Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B**Answering the question in **Part-A** is Compulsory,
Three Questions should be answered from **Part-B*******

PART-A

- 1.(i) Evaluate $\sqrt[4]{29}$ to four decimal places by Newton-Raphson method.
 - (ii) If the interval of differencing is unity, find $\Delta^2 \sin(px+q)$.
 - (iii) Using Taylor's series method obtain y(0.2) for the differential equation $y' + 2y = 3e^{2x}$, y(0) = 0.
 - (iv) Find the Fourier series of $f(x) = |\cos x|$ in $(-\pi, \pi)$.
 - (v) Find Fourier transform of $f(x) = \begin{cases} 1, & |x| < a \\ 0, & |x| > a \end{cases}$.
 - (vi) Prove that $Z(\cos nt) = \frac{z(z \cos t)}{z^2 2z\cos t + 1}$.

[3+3+3+3+5+5]

PART - B

- 2.(a) Find a real root of $x^3 4x 9 = 0$ using Bisection method up to 4 stages.
 - (b) Using Gauss Backward difference polynomial, find y(5) given that

. 1	X	0	4	6	8	10
	Y	5	11	13	15	17

[8+8]

- 3.(a) Using Newton-Raphson method, find a positive root of $\cos x x e^x = 0$ up to four decimal places.
 - (b) Using Lagrange's Interpolation, find f(12), given that

X	3	7	9	13
Y	5	12	13	21

[8+8]

- 4.(a) Using Euler's method, solve for y (0.4) from y' = 2xy, y(0) = 1 using step size 0.2.
 - (b) Find the Fourier series of periodicity 2 for $f(x) = x + x^2$ in 0 < x < 2.

- Represent the function as Fourier sine series $f(x) = \begin{cases} \frac{\pi}{2}, & 0 < x < \frac{\pi}{2} \\ \pi x, & \frac{\pi}{2} < x < \pi \end{cases}$. 5.(a)
 - Estimate y(0.2), given y' = 3x + y, y(0) = 1 using Runge-Kutta 4th order. (b)

- Find Fourier cosine transform of $\frac{e^{-ax}}{x}$. 6.(a)
 - Find the Z-transform of $\{x(n)\} = n z^n$ (b)

[8+8]

- Find Fourier transform of $f(x) = \begin{cases} \frac{1}{2a}, & |x| \le a \\ 0, & |x| > a \end{cases}$. 7.(a)