Subject Code: R13107/R13

I B. Tech I Semester Regular Examinations Feb./Mar. - 2014 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to ECE, EEE, EIE, Bio-Tech, EComE, Agri.E)
Time: 3 hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(i) Write the sufficient condition for the convergence of Newton-Raphson method?
(ii) Show that $\mu \delta=\frac{1}{2}(\Delta+\nabla)$?
(iii) Write the merits and demerits of Euler Modified method?
(iv) Write the Dirichlet's conditions of $f(x)$?
(v) State Initial and Final value theorems of Z-transforms?
(vi) Write the statement of Fourier integral theorem?
$[3+4+4+3+4+4]$

PART-B

2.(a) Using Runge-Kutta method of fourth order solve $y^{\prime}=x y, y(1)=2$ at $x=1.2$ with $h=0.2$.
(b) Find the Fourier transform of $f(x)=x^{n^{2}-1}$
3. For the following data estimate f (1.720) using forward, $\mathrm{f}(2.68)$ using backward and f (2.36) using central difference formula.

x	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0
$\mathrm{f}(\mathrm{x})$	0.0495	0.0605	0.0739	0.0903	0.1102	0.1346	0.1644	0.2009

4.(a) Solve the differential equation $\frac{d y}{d x}=x+y$ subject to $y(0)=1$ by Picard's method and hence find $y(0.2)$.
(b) Using Regula Falsi method find a real root of $f(x)=2 x^{7}+x^{5}+1=0$ correct upto two decimalplaces.
5.(a) Find the Fourier series for $f(x)=2 l x-x^{2}$ in $(0,2 l)$, hence show that $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\frac{1}{4^{2}}+\ldots=\frac{\pi^{2}}{12}$
(b) Find the inverse Z transform of $\frac{3 z^{2}+z}{(5 z-1)(5 z-2)}$

Page 1 of 2

6.(a) Find the Fourier transform of $f(x)=\left\{\begin{array}{c}1-x^{2},|x|<1 \\ 0, \quad|x|>1\end{array}\right.$
(b) Find a real root of $f(x)=x+\log x-2$ using Newton-Raphson method.
7.(a) Find Z-transform of (i) $a n^{2}+b n+c \quad$ (ii) $\sin (3 n+5)$
(b) Find the half range Fourier sine series for $f(x)=x$ in $(0, \pi)$?
(anco.

Subject Code: R13107/R13

I B. Tech I Semester Regular Examinations Feb./Mar. - 2014 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to ECE, EEE, EIE, Bio-Tech, EComE, Agri.E)
Time: 3 hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(i) State Intermediate Value theorem?
(ii) Show that $\Delta\left(e^{a x} \log b x\right)$?
(iii) Write the second order Runge-Kutta formula?
(iv) Give any one application of Fourer Series with example?
(v) State the convolution theorem of inverse Z-transforms?
(vi) Write the formulas Fourier cosine and sine transform?
$[4+3+4+3+4+4]$

PART- B

2.(a) Using modified Euler's method to find the value of y at $\mathrm{x}=0.2$ with $\mathrm{h}=0.1$ where $y^{\prime}=1-y, y(0)=0$
(b) Find the Fourier transform of $f(x)=\left\{\begin{array}{l}0,|x|<a \\ 1,|x|>a\end{array}\right.$
3.(a) Prove the relation $\sum_{k=0}^{n-1} \Delta^{2} f_{k}=\Delta f_{k}-\Delta f_{0}$
(b) Use Lagrange's interpolation formula to calculate $\mathrm{f}(3)$ from the following table.

x	0		2	4	5	6
$\mathrm{f}(\mathrm{x})$	1	14	15	5	6	19

4.(a) Solve the differential equation $\frac{d y}{d x}=\mathrm{x}^{2} \mathrm{y}$ subject to $y(0)=1$ by Taylor series method and hence find $y(0.1), y(0.2)$.
(b) Using bisection method find a root of $f(x)=x-\cos x=0$.
5.(a) Obtâin the Fourier series for $f(x)=|x|$ in $[-\pi, \pi]$, hence show that $\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\cdots=\frac{\pi^{2}}{8}$
(b) Solve $u_{n+2}+4 u_{n+1}+3 u_{n}=3^{n}$ with $u_{0}=0 ; u_{1}=1$ using Z transforms
6.(a) Using Fourier integral, prove that $e^{-a x}=\frac{2 a}{\pi} \int_{0}^{\infty} \frac{\cos a x}{a^{2}+\alpha^{2}} d \alpha, a>0, x>0$
(b) Find a real root of $f(x)=x \log _{10} x=1.2$ using Newton-Raphson method.
7.(a) Find the Z transform of $(i) \cos (n+1) \theta \quad$ (ii) $\sin h \frac{n \pi}{2}$
(b) Obtain the Fourier series for spectrum of a periodic function with example?

Page 2 of 2

Subject Code: R13107/R13

I B. Tech I Semester Regular Examinations Feb./Mar. - 2014 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to ECE, EEE, EIE, Bio-Tech, EComE, Agri.E)
Time: $\mathbf{3}$ hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B

PART-A

1.(i) Write the sufficient condition for the convergence of Newton-Raphson method?
(ii) Show that $\mu \delta=\frac{1}{2}(\Delta+\nabla)$?
(iii) Write the advantages \& disadvantages of Taylor series method?
(iv) Write the Fourier series when the given function $f(x)$ is an even?
(v) Write the properties of multiplication by n and division by n of Z-transforms?
(vi) Write the complex form of Fourier integral theorem?

PART- B

2.(a) Using iteration method find a real root of $f(x)=x^{2}-3 x+1$ correct upto three decimal places starting with $\mathrm{x}=1$.
(b) Solve $u_{n+2}-2 u_{n+1}+u_{n}=3 n+5$ using Z-Transforms?
3.(a) Evaluate $\Delta\left(e^{a x} \log b x\right)$
(b) By using Lagrange's interpolation formula, fit a polynomial data

x	0	1	3	4
$\mathrm{f}(\mathrm{x})$	-12	0	6	12

4.(a) Using modified Euler method solve numerically the equation $\frac{d y}{d x}=2+\sqrt{x y}$ with $y(1)=1$ to find $y(1.2)$
(b) Find $\mathrm{f}(\hat{\mathrm{x}})$ ifits Fourier sine transform is $\frac{s}{1+s^{2}}$
5.(a) Obtain the Fourier series for $f(x)=(\pi-x)^{2}$ in $0<x<2 \pi$, hence deduce that $\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots=\frac{\pi^{2}}{6}$
(b) Using convolution theorem, evaluate $Z^{-1}\left[\frac{z^{2}}{z^{2}-4 z+3}\right]$
6.(a) Using Parseval's identities, prove that $\int_{0}^{\infty} \frac{d t}{\left(a^{2}+t^{2}\right)\left(b^{2}+t^{2}\right)}=\frac{\pi}{2 a b(a+b)}$
(b) Using Runge-Kutta method of third order, find the values of $y(x)$ for $x=0.1,0.2$ where $y^{\prime}=x-2 y, y(0)=1$.
7.(a) Find the half range sine series for $f(x)=x(\pi-x)$ in $(0, \pi)$
(b) Find a real root of $f(x)=x^{3}-19$ correct upto three decimal places using NewtonRaphson method

Subject Code: R13107/R13

I B. Tech I Semester Regular Examinations Feb./Mar. - 2014 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to ECE, EEE, EIE, Bio-Tech, EComE, Agri.E)
Time: 3 hours
Max. Marks: 70
Question Paper Consists of Part-A and Part-B Answering the question in Part-A is Compulsory, Three Questions should be answered from Part-B *****

PART-A

1.(i) Show that $\mu \delta=\frac{1}{2}(\Delta+\nabla)$?
(ii) Write the merits and demerits of Iteration method?
(iii) Write the merits and demerits of Euler Modified method?
(iv) Write the Dirichlet's conditions of $f(x)$?
(v) State convolution theorem of Z-transforms?
(vi) Write the statement of Fourier integral theorem?
$[3+4+4+3+4+4]$

PART- B

2.(a) Find the Fourier sine and cosine transforms of $\left(2 . e^{-5 x}+5 \cdot e^{-2 x}\right)$.
(b) Given $f(x)=\left\{\begin{array}{lr}1-x, & -\pi \leq x \leq 0 \\ 1+x, & 0 \leq x \leq \pi\end{array}\right.$

Is the function even or odd? Find the Fourier series for $f(x)$.
3.(a) Prove the relation between E and D ?
(b) For the following data estimate K (0.25) using backward difference formula.

m	0.20	0.22	0.24	0.26	0.28	0.30
$\mathrm{~K}(\mathrm{~m})$	1.659624	1.669850	1.680373	1.691208	1.702374	1.713889

[4+12]
4.(a) Solve the differential equation $\frac{d y}{d x}=1+x y$ subject to $y(0)=1$ by Taylor series method and hence find $y(0.2)$.
(b) Sofve the difference equation $\mathrm{y}_{\mathrm{n}+2}+3 \mathrm{y}_{\mathrm{n}+1}+2 \mathrm{y}_{\mathrm{n}}=0, \mathrm{y}_{0}=1, \mathrm{y}_{1}=2$ by $\mathrm{z}-$ transform.
5.(a) Find the Fourier series of $f(x)=x+x^{2},-\pi<x<\pi$ and hence deduce the series $\frac{1}{1^{2}}-\frac{1}{2^{2}}+\frac{1}{3^{2}}-\ldots \ldots=\frac{\pi^{2}}{12}$
(b) Apply Runge - Kutta Method to find $y(0.1)$ and $y(0.2)$ where $\frac{d y}{d x}=x^{2}-y$ and $y(0)=1$.

Subject Code: R13107/R13

6.(a) Find the Fourier transform of $e^{-|x|}$
(b) Using Regula Falsi method find a real root of $f(x)=2 x^{7}+x^{5}+1=0$ correct upto two decimal places.
7.(a) Find $\mathrm{z}\left(\frac{1}{\mathrm{n}!}\right)$ and hence evaluate $\mathrm{z}\left(\frac{1}{(\mathrm{n}+1)!}\right)$ and $\mathrm{z}\left(\frac{1}{(\mathrm{n}+2)!}\right)$
(b) Find a real root of $f(x)=x+\log x-2$ using Newton-Raphson method.

