Set No - 1

I B. Tech I Semester Regular Examinations Feb./Mar. - 2014 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to ECE, EEE, EIE, Bio-Tech, EComE, Agri.E)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B**

PART-A

1.(i) Write the sufficient condition for the convergence of Newton-Raphson method?

(ii) Show that $\mu\delta = \frac{1}{2}(\Delta + \nabla)$?

(iii) Write the merits and demerits of Euler Modified method?

(iv) Write the Dirichlet's conditions of f(x)?

(v) State Initial and Final value theorems of Z-transforms?

(vi) Write the statement of Fourier integral theorem?

[3+4+4+3+4+4]

PART-B

2.(a) Using Runge-Kutta method of fourth order solve y' = xy, y(1) = 2 at x = 1.2 with h = 0.2.

(b) Find the Fourier transform of $f(x) = x^{n-1}$

[8+8]

3. For the following data estimate f(1.720) using forward, f(2.68) using backward and f(2.36) using central difference formula.

	X	1.6	1.8	2.0	2.2	2.4	2.6	2.8	3.0
	f(x)	0.0495	0.0605	0.0739	0.0903	0.1102	0.1346	0.1644	0.2009
\(\sigma_{\sigma} \)									[16

4.(a) Solve the differential equation $\frac{dy}{dx} = x + y$ subject to y(0) = 1 by Picard's method and hence find y(0.2).

(b) Using Regula Falsi method find a real root of $f(x) = 2x^7 + x^5 + 1 = 0$ correct upto two decimal places.

[8+8]

5.(a) Find the Fourier series for $f(x) = 2lx - x^2$ in (0, 2*l*), hence show that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$

(b) Find the inverse Z transform of $\frac{3z^2+z}{(5z-1)(5z-2)}$

- Find the Fourier transform of $f(x) = \begin{cases} 1 x^2, |x| < 1 \\ 0, |x| > 1 \end{cases}$ Find a real root of $f(x) = x + \log x 2$ using Newton-Raphson method. 6.(a)
 - (b)

- Find Z-transform of (i) $an^2 + bn + c$ (ii) $\sin (3n + 5)$ 7.(a)
 - Find the half range Fourier sine series for f(x) = x in $(0, \pi)$? (b)

Set No - 2

I B. Tech I Semester Regular Examinations Feb./Mar. - 2014 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to ECE, EEE, EIE, Bio-Tech, EComE, Agri.E)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B**

PART-A

1.(i) State Intermediate Value theorem?

(ii) Show that $\Delta(e^{ax} \log bx)$?

(iii) Write the second order Runge-Kutta formula?

(iv) Give any one application of Fourer Series with example?

(v) State the convolution theorem of inverse Z-transforms?

(vi) Write the formulas Fourier cosine and sine transform?

[4+3+4+3+4+4]

PART-B

2.(a) Using modified Euler's method to find the value of y at x = 0.2 with h = 0.1 where y' = 1 - y, y(0) = 0

(b) Find the Fourier transform of $f(x) = \begin{cases} 0, |x| < a \\ 1, |x| > a \end{cases}$

[8+8]

3.(a) Prove the relation $\sum_{k=0}^{n-1} \Delta^2 f_k = \Delta f_k - \Delta f_0$

(b) Use Lagrange's interpolation formula to calculate f(3) from the following table.

X	0		2	4	5	6
f(x)	1	14	15	5	6	19

[4+12]

4.(a) Solve the differential equation $\frac{dy}{dx} = x^2y$ subject to y(0) = 1 by Taylor series method and hence find y(0.1), y(0.2).

(b) Using bisection method find a root of $f(x) = x - \cos x = 0$.

[8+8]

5.(a) Obtain the Fourier series for f(x) = |x| in $[-\pi, \pi]$, hence show that $\frac{1}{4^2} + \frac{1}{2^2} + \frac{1}{5^2} + \cdots = \frac{\pi^2}{9}$

 $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{n}{8}$ (b) Solve n = 1, 2n = 1, 2

(b) Solve $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$ with $u_0 = 0$; $u_1 = 1$ using Z transforms

- Using Fourier integral, prove that $e^{-ax} = \frac{2a}{\pi} \int_0^\infty \frac{\cos ax}{a^2 + \alpha^2} d\alpha$, a > 0, x > 0Find a real root of $f(x) = x \log_{10} x = 1.2$ using Newton-Raphson method. 6.(a)
 - (b)

- Find the Z transform of (i) $\cos(n+1)\theta$ $(ii) \sin h \frac{n\pi}{2}$ 7.(a)
 - Obtain the Fourier series for spectrum of a periodic function with example? (b)

Set No - 3

I B. Tech I Semester Regular Examinations Feb./Mar. - 2014 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to ECE, EEE, EIE, Bio-Tech, EComE, Agri.E)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B**

PART-A

- 1.(i) Write the sufficient condition for the convergence of Newton-Raphson method?
 - (ii) Show that $\mu \delta = \frac{1}{2} (\Delta + \nabla)$?
 - (iii) Write the advantages & disadvantages of Taylor series method?
 - (iv) Write the Fourier series when the given function f(x) is an even?
 - (v) Write the properties of multiplication by n and division by n of Z-transforms?
 - (vi) Write the complex form of Fourier integral theorem?

[3+3+4+4+4]

PART-B

- 2.(a) Using iteration method find a real root of $f(x) = x^2 3x + 1$ correct upto three decimal places starting with x=1.
 - (b) Solve $u_{n+2} 2u_{n+1} + u_n = 3n + 5$ using Z-Transforms?

[8+8]

- 3.(a) Evaluate $\Delta(e^{ax} \log bx)$
 - (b) By using Lagrange's interpolation formula, fit a polynomial data

X	0	1	3	4		
f(x)	-12	0	6	12		

[4+12]

- 4.(a) Using modified Euler method solve numerically the equation $\frac{dy}{dx} = 2 + \sqrt{xy}$ with y(1) = 1 to find y(1.2)
 - (b) Find f(x) if its Fourier sine transform is $\frac{s}{1+s^2}$

[8+8]

- 5.(a) Obtain the Fourier series for $f(x) = (\pi x)^2$ in $0 < x < 2\pi$, hence deduce that $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \frac{\pi^2}{6}$
 - (b) Using convolution theorem, evaluate $Z^{-1}\left[\frac{z^2}{z^2-4z+3}\right]$

- 6.(a) Using Parseval's identities, prove that $\int_{0}^{\infty} \frac{dt}{(a^2 + t^2)(b^2 + t^2)} = \frac{\pi}{2ab(a+b)}$
 - (b) Using Runge-Kutta method of third order, find the values of y(x) for x = 0.1, 0.2 where y' = x 2y, y(0) = 1.

- 7.(a) Find the half range sine series for $f(x) = x(\pi x)$ in $(0, \pi)$
 - (b) Find a real root of $f(x) = x^3 19$ correct upto three decimal places using Newton-Raphson method

Set No - 4

I B. Tech I Semester Regular Examinations Feb./Mar. - 2014 MATHEMATICS-II (MATHEMATICAL METHODS)

(Common to ECE, EEE, EIE, Bio-Tech, EComE, Agri.E)

Time: 3 hours

Max. Marks: 70

Question Paper Consists of **Part-A** and **Part-B** Answering the question in **Part-A** is Compulsory, Three Questions should be answered from **Part-B**

PART-A

- 1.(i) Show that $\mu\delta = \frac{1}{2}(\Delta + \nabla)$?
 - (ii) Write the merits and demerits of Iteration method?
 - (iii) Write the merits and demerits of Euler Modified method?
 - (iv) Write the Dirichlet's conditions of f(x)?
 - (v) State convolution theorem of Z-transforms?
 - (vi) Write the statement of Fourier integral theorem?

[3+4+4+3+4+4]

PART-B

2.(a) Find the Fourier sine and cosine transforms of $(2e^{-5x} + 5e^{-2x})$

(b) Given
$$f(x) = \begin{cases} 1-x, & -\pi \le x \le 0\\ 1+x, & 0 \le x \le \pi \end{cases}$$

Is the function even or odd? Find the Fourier series for f(x).

[8+8]

- 3.(a) Prove the relation between E and D?
 - (b) For the following data estimate K (0.25) using backward difference formula.

m	0.20	0.22	0.24	0.26	0.28	0.30
K(m)	1.659624	1.669850	1.680373	1.691208	1.702374	1.713889

[4+12]

- 4.(a) Solve the differential equation $\frac{dy}{dx} = 1 + xy$ subject to y(0) = 1 by Taylor series method and hence find y(0.2).
 - (b) Solve the difference equation $y_{n+2}+3y_{n+1}+2y_n=0$, $y_0=1$, $y_1=2$ by z-transform. [8+8]

5.(a) Find the Fourier series of $f(x) = x + x^2, -\pi < x < \pi$ and hence deduce the series

$$\frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{3^2} - \dots = \frac{\pi^2}{12}$$

(b) Apply Runge - Kutta Method to find y(0.1) and y(0.2) where $\frac{dy}{dx} = x^2 - y$ and y(0) = 1. [8+8]

- 6.(a) Find the Fourier transform of $e^{-|x|}$
 - (b) Using Regula Falsi method find a real root of $f(x) = 2x^7 + x^5 + 1 = 0$ correct upto two decimal places.

- 7.(a) Find $z(\frac{1}{n!})$ and hence evaluate $z(\frac{1}{(n+1)!})$ and $z(\frac{1}{(n+2)!})$
 - (b) Find a real root of $f(x) = x + \log x 2$ using Newton-Raphson method.

