II B. Tech II Semester Supplementary Examinations, January - 2014 METALLURGY AND MATERIAL SCIENCE

(Com. to ME, AME, MM)

Time: 3 hours Max. Marks: 75

- 1. a) What is meant by bond energy?
 - b) Distinguish between covalent and ionic bonds in solids. Illustrate with examples.
- 2. a) Explain chemical compounds metallic compounds and interstitial compounds with suitable example.
 - b) What is an alloy steel? How are alloy steels classified? List four important alloying elements added to steel and their function.
- 3. a) What is the importance of phase diagrams? Explain.
 - b) Draw the phase diagram of eutectoid system showing important points and Temperature. Give examples and also write the reaction involved.
- 4. a) What is Spheriodal graphite cast iron?
 - b) Give the properties of Hadfield Manganese steels, tool and die steels?
 - c) How would you identify a piece of gray cast iron without using a microscope or breaking the sample?
- 5. a) Explain why hardening by quenching is following by tempering temperatures. How does mechanical properties vary with tempering temperature?
 - b) What information is made available by the isothermal transformation diagram (TTT-Curve) that was lacking in the iron-carbon equilibrium diagram?
- 6. a) What are bronzes? How are they classified? Give the composition, microstructure, properties and applications of any three of them.
 - b) Give a few applications where copper and its alloys are exclusively used.
- 7. a) Define the term ceramics. Give example for different traditional ceramics.
 - b) What are the ingredients of glass? How are glass bottles manufactured?
- 8. a) Sketch and explain various reinforcing patterns of fibers being used in composites. How is 'strand' different from 'yarn'?
 - b) Draw stress-strain curves for: i) Various fibers ii) Various composites iii) Different matrices. Explain the curves very briefly.

Code No: R22035 (R10) (SET - 2

II B. Tech II Semester Supplementary Examinations, January - 2014 METALLURGY AND MATERIAL SCIENCE

(Com. to ME, AME, MM)

Time: 3 hours Max. Marks: 75

- 1. a) Explain the principle of bond formation in solids, with a suitable example.
 - b) How will you determine the size of the grain?
- 2. a) Describe the importance of Hume-Rothery Rules in the development of alloys.
 - b) What are the three most common intermediate alloy phases? Explain any two of them.
- 3. a) How do you classify the phase diagrams? What are objectives of phase diagram?
 - b) Write the peritectoid reaction. Draw a labeled phase diagram showing this reaction. Also give examples.
- 4. a) Name the various types of cast iron and discuss their properties and uses.
 - b) Give at least four advantages of maraging steels as compared to regular stainless steels.
- 5. a) Define the term heat treatment and explain why are the steels heat treated.
 - b) Write short notes on: i) Age hardening and
- ii) Stress relieving.
- 6. a) Explain Alpha and Alpha-Beta Alloys of Titanium.
 - b) Titanium is very costly metal today. Can you justify its high cost and give a few typical applications of metal.
- 7. a) What are ceramics? Why do they possess high hardness, brittleness and high melting points?
 - b) What are the important characteristics of ceramics?
 - c) Name a few ceramic materials which are used in industry.
- 8. a) Explain the classification of composite materials.
 - b) What do you understand the fiber reinforced materials? Explain with suitable example.

Code No: R22035

SET - 3

II B. Tech II Semester Supplementary Examinations, January - 2014 METALLURGY AND MATERIAL SCIENCE

(Com. to ME, AME, MM)

Time: 3 hours Max. Marks: 75

- 1. Discuss the various mechanisms of strengthening of metals and alloys.
- 2. a) Why is alloying done? Explain why alloys find more applications than pure metals.
 - b) What is a solid solution? What factors do control the solubility of elements?
- 3. a) Define the following terms:
 - i) System
- ii) Component
- iii) Solubility limit and
- iv) Phase
- b) What is an invariant reaction? List and explain three reactions present in the Fe Fe₃C equilibrium diagram.
- 4. a) Explain the properties and engineering applications of the following:
 - i) Low carbon
- ii) Medium carbon
- iii) High carbon Steels.
- b) Which stainless steel is best suited for surgical instruments? Explain.
- 5. a) What is the purpose of tempering? Explain briefly the theory of tempering.
 - b) Steel is made hard by quenching. List at least three conditions which must be fulfilled to justify the above statement.
- 6. a) What is the structure and properties of copper and its alloys.
 - b) What is meant by anodizing of Aluminum? Explain.
- 7. a) Compare the physical, chemical and mechanical properties of ceramics with those of metals.
 - b) What is Portland cement? How does it differ from white cement?
- 8. a) What are composite materials? Explain with examples and what do you understand by the fiber reinforced materials?
 - b) Explain briefly the metal-matrix composites and Carbon-Carbon composites

Code No: R22035

SET - 4

II B. Tech II Semester Supplementary Examinations, January - 2014 METALLURGY AND MATERIAL SCIENCE

(Com. to ME, AME, MM)

Time: 3 hours Max. Marks: 75

- 1. a) Describe Covalent bond formation with a suitable example.
 - b) Define grain growth and enumerate the factors on which it depends.
- 2. a) What is an alloy? How many components are found in an alloy? Give a few examples of alloys.
 - b) Explain substitution and interstitial solid solutions with neat sketches.
- 3. a) What is eutectic reaction? How does it differ from a eutectoid reaction?
 - b) Derive the Lever law as applied to equilibrium diagrams?
- 4. a) What is cast iron? How does it differ from pig iron?
 - b) Explain the following types of malleable cast irons.
 - i) Ferritic malleable cast iron
 - ii) Pearlitic malleable cast iron.
 - iii) Ferrito-Pearlitic malleable Cast Iron
- 5. a) What is annealing? Differentiate between Process annealing and recrystallization annealing.
 - b) Define and explain Hardness and Hardenability.
- 6. a) What is brass? Describe the composition, properties and uses of brasses.
 - b) What are the advantages of aluminum alloys over other alloys? Where are they used?
 - c) Explain briefly phosphor bronze.
- 7. a) What are structural ceramics? Discuss the important structural ceramics with examples and applications.
 - b) What are Refractory materials? State their basic properties and used.
- 8. a) What is a composite material? What are the ingradient of various FRP?
 - b) Explain the following in detail:
 - i) Matrix
- ii) Reinforcement
- iii) Interface and
- iv) C-C Composites.