Set No: 1

III B.Tech. II Semester Supplementary Examinations, January -2014 VLSI DESIGN
(Common to Electronics and Communication Engineering \& Electronics and Computer Engineering \& Electronics and Instrumentation Engineering)

Time: 3 Hours

Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Explain how the transistors are integrated on a single chip according to Moore's Law?
(b) Explain the fabrication steps for NMOS Technology with neat diagrams. [5+10]
2. Define the following terms:
(i) Threshold voltage
(ii) Body effect
(iii) Figure of merit
3. (a) Explain the Transistor design rules for nMOS, pMOS and CMOS technologies. (b) Design and Draw the Layout of CMOS Inverter gate and explain its working.
[8+7]
4. (a) Consider the metal wire segment of length 20λ and width of 3λ. Calculate the capacitance to substrate if the relative capacitance value is $0.075 \square \mathrm{C}_{\mathrm{g}}$.
(b) Draw the model for derivation of delay unit and explain.
(c) Derive the equation for fall time of CMOS inyerter.
5. (a) How to scale the following parameters:
(i) power-speed product (ii) power dissipation per gate (iii) Switching energy per gate
(iv) Carrier density in channel
(b) What are the various limits due to sub threshold currents?
6. (a) Compare PLAs and PALs with suitable examples.
(b) What is FPGA and how these are used in VLSI Design.
7. (a) What are the different styles or models of VHDL explain them with suitable syntax.
(b) How packages are different from libraries in VHDL?
8. (a) How VhDL is used to get a logic level simulation?
(b) Write a VHDL program for a ripple counter and also write its test bench program.

III B.Tech. II Semester Supplementary Examinations, January -2014
VLSI DESIGN
(Common to Electronics and Communication Engineering \& Electronics and Computer Engineering \& Electronics and Instrumentation Engineering)
Time: 3 Hours
Max Marks: 75

> Answer any FIVE Questions
> All Questions carry equal marks
> $* * * *$

1. (a) Explain the various fabrication steps for CMOS technology with neat diagrams. (b) Compare speed and power performance of available technologies. [10+5]
2. (a) What is Threshold voltage and derive its expression.
(b) Derive the relation between pull-up and pull-down ratio for an nMOS inverter driven by another nMOS inverter.
3. (a) Explain the design rules for p-well CMOS process.
(b) Design and Draw the Layout of a 1-bit CMOS Shift Register and explain its shifting operation.
4. (a) Find the sheet resistance of the following wire segment. All the measurements are in λ.

(b) Find the inverter pair delay for 4:1 ration nMOS inverter.
(c) Draw the rise time model and find the equation for rise time of CMOS inverter.
5. (a) How to scale the following parameters:
[8+7]
(i) Maximum operating frequency (ii) Saturated current (iii) Channel resistance (iv) Power dissipation
(b) What are the different effect of scaling on interconnect and contact resistances?
6. (a) Implement the following function with PALs.
$\mathrm{F}=\mathrm{AC}+\mathrm{AB}^{\prime}+\mathrm{B}^{\prime}{ }^{\prime} \mathrm{C}$
(b) Draw the basic architecture of FPGA and explain why these are called Field

Programmable.
a) Compare the VHDL and Verilog HDL.
b) What are the different basic elements in VHDL and explain them.
8. (a) How the VHDL logic synthesizer is used to verify logical operation of any given circuit?
(b) Write a VHDL program to find number of ones in a given input and write its synthesis report.
[7+8]

III B.Tech. II Semester Supplementary Examinations, January -2014

VLSI DESIGN
(Common to Electronics and Communication Engineering \& Electronics and Computer Engineering \& Electronics and Instrumentation Engineering)

Time: 3 Hours

Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Explain the various fabrication steps for pMOS technology with neat diagrams.
(b) Discuss the Microelectronics evolutionary process with examples. [10+5]
2. (a) Draw the $\mathrm{I}_{\mathrm{ds}}-\mathrm{V}_{\mathrm{ds}}$ characteristics and derive the relation between I_{ds} and W / L ratio.
(b) Derive the relation between pull-up and pull-down ratio for an nMOS inverter driven through one or more pass transistors.
3. (a) Explain the design rules for wires and contacts.
[8+7]
(b) Design and Draw the Layout of CMOS NOR gate and explain its working.
4. Explain the following with suitable examples: [5+5+5]
(a) Sheet resistance (b) Inverter delays (c) Propagation delays
5. (a) What are the different scaling factors for device parameters and explain how scale them?
(b) What are the limitations on miniaturizing the size of transistor?
6. (a) Implement the following function using PLAs

$$
\mathrm{F}=\mathrm{abc} c^{\prime}+\mathrm{ab} \mathrm{~b}^{\prime} \mathrm{c}+\mathrm{a} c^{\prime}
$$

(b) Compare CPLDs and FPGAs in terms of architecture and applications.
7. (a) How the variables and constants are assigned in VHDL?
(b) What is mean by configuration bonding? How it is done in VHDL?
8. (a) What are the different constraints can be provide using VHDL in synthesis analysis?
(b) Write a YHDL program for a full adder and also write its test bench?
[7+8]

1 of 1

Set No: 4

III B.Tech. II Semester Supplementary Examinations, January -2014
VLSI DESIGN
(Common to Electronics and Communication Engineering \& Electronics and Computer Engineering \& Electronics and Instrumentation Engineering)
Time: 3 Hours
Max Marks: 75
Answer any FIVE Questions
All Questions carry equal marks

1. (a) Explain the fabrication steps of twin-tub process for CMOS technology.
(b) Compare BiCMOS and CMOS technologies.
2. (a) Draw the structure of nMOS transistor and explain how I_{ds} is depends on W / L ratio.
(b) What is Latchup in CMOS circuits? How to overcome it?
3. (a) What are the Lambda-based design rules? Give some examples.
(b) Design and Draw the Layout of CMOS NAND gate and explain its working.
4. (a) How do you estimate the rise-time and fall-time of CMOS inverter?
(b) Explain how to drive a large capacitive loads?
5. (a) How to scale the following parameters:
(i) Gate capacitance (ii) parasitic capacitance (iii) Channel resistance (iv) gate delay
(b) Explain the effects of Substrate doping on Scaling.
6. (a) Compare full custom and semieustom Design approaches with examples.
(b) What is CPLDs? How these are used in VLSI designing?
7. (a) What are the different design units in VHDL and explain them with suitable syntax.
(b) How sequential statement are write in VHDL? Give some example.
8. (a) Howsimulation and synthesis are obtained by VHDL?
(b) Write a YHDL programme for a Decade counter.
