Code No: G2201/R13

M. Tech. I Semester Supplementary Examinations, December-2016

APPLIED MATHEMATICS
(Common to TE, SE and SD)
Time: 3 hours
Max. Marks: 60

Answer any FIVE Questions
 All Questions Carry Equal Marks

1. Solve the heat equation $\frac{\partial u}{\partial t}=4 \frac{\partial^{2} u}{\partial x^{2}}$ subject to the conditions $u(x, 0)=0, u(0, t)=0$ and
$u(1, t)=t$ with $\mathrm{h}=0.25$ and $\mathrm{k}=1 / 16$. Compute $u(0.75,0.125)$ using Crank Nicolson method.
2. a If $u(r, \theta, \phi)$ depends only on r and θ, then find the Laplacian in spherical coordinates.
b Derive the finite difference approximations of the first and second derivatives,
3. a Fit a curve of the form $y=a b^{x}$ for the following data

x	1	3	7	9	10	12	15
Y	0	2	6	8	13	14	20

b Calculate the coefficient of correlation between age of cars and annual maintenance cost.
Comment on your result.

Age of cars	2	4	6	7	8	10	12
Cost	1600	1500	1700	1900	2200	2300	2000

4. a Find the multiple linear regressionequations of X on Y and Z using the data given below:

X	1	2	5	7	11
Y	3	6	7	8	12
Z	5	7	9	11	14

b Following are the ranks obtained by 9 students in History and economics. Find the rank correlation coefficient and comment.

History	1	2	3	4	5	6	7	8	9
Economics	3	5	2	1	6	8	9	4	7

5. Derive the solution of palace equation in spherical coordinates treating the solution to be symmetric about z -axis.
6. Solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, 0<\mathrm{x}<10, \mathrm{u}(0, \mathrm{t})=0, \mathrm{u}(10, \mathrm{t})=0$ and $\mathrm{u}(\mathrm{x}, 0)=\mathrm{x}$ using analytical method. 1 of 2

Code No: G2201/R13

7. a Investigate the values of β and μ so that the equations $2 x+3 y+5 z=9,7 x+3 y-2 z=8$ and $2 x+3 y+\beta z=\mu$ have
i. no solution
ii. a unique solution
iii. An infinite number of solutions.
b
Find, using Gauss elimination method, the inverse of the matrix $\left[\begin{array}{ccc}1 & 1 & 1 \\ 4 & 3 & -1 \\ 3 & 5 & 3\end{array}\right]$.
8.

Find the eigenvalues and eigen vectors of the matrix $\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$.

