Code No: G3501/R13

M. Tech. I Semester Supplementary Examinations, December-2016 COMPUTER AIDED NUMERICAL MATHEMATICS (Computer Aided Structural Engineering)

Time: 3 hours
Max. Marks: 60

Answer any FIVE Questions
 All Questions Carry Equal Marks

1. a Find a real root of $\mathrm{x} \tan x+1=0$ using Newton Raphson method.
b Find a real root of the equation $x \log _{10} x=1.2$ using bisection method.
2. a A solid of revolution is formed by rotating the area between the x-axis, the lines $x=$ $0 \quad$ and $x=1$ and a curve through the points with the following coordinates

x	0	0.25	0.50	0.75
y	1	0.9896	0.9589	0.9089

Estimate the volume of the solid given by $V=\pi \int_{0}^{1} y^{2} d x$ using Simpson's $1 / 3^{\text {rd }}$ rule.
b Evaluate $\int_{0}^{1} \frac{1}{1+x} d x$ correct to three decimal places with $\mathrm{h}=0.5, \mathrm{~h}=0.25$ successively using Trapezoidal and Romberg integration.
3. a Solve the system of equations using $L U$ decomposition method $27 x+6 y-z=85$, $6 x+15 y+2 z=72, x+y+54 z=110$.
b Perform three iterations of the Newton Raphson method to solve the system of equations

$$
x^{2}+x y+y^{2}=7 \text { and } x^{3}+y^{3}=9
$$

4. Using shooting method, solve the boundary value problem

$$
u^{\prime \prime}=u+1,0<x<1, u(0)=0, u(1)=e-1 .
$$

1 of 2

Code No: G3501/R13

5. Given the values of $u(x, y)$ on the boundary of the square in the figure, evaluate the $\mathrm{u}(\mathrm{x}, \mathrm{y})$ satisfying the Laplace equation at the interior nodes of the grid using Gauss Seidel method.

6. a Solve the Laplace equation with $h=1 / 3$ over the boundary of a square of unit length, with $u(x, y)=3 x y$ on the boundary.
b Write the Crank Nicholson scheme and then solve $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}, u(x, 0)=\sin x, 0 \leq x \leq \pi$, $u(0, t)=0=u(\pi, t)$ for $u\left(\pi / 2, \pi^{2} / 16\right)$.
7. a Solve the one dimensional heat equation $\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}$

Subject to the conditions $u(x, 0)=0=\boldsymbol{u}(0, t), u(1, t)=t$ using Bender Schmidt method.
b Derive necessary and sufficient conditions for stability of the finite difference equation related to parabolic equation.
8. a Explain different steps involved in the implementation of finite element approach.
b Solve the one dimensional Poisson equation $\frac{d^{2} T}{d x^{2}}=-20$ for a 100 cm rod with boundary conditions $\mathrm{T}(0, \mathrm{t})=15$ and $\mathrm{T}(100, \mathrm{t})=30$ using finite element approach.

```
*****
```

