## Code No: I6801/R16

M.Tech. I Semester Regular Examinations, January-2017

## DIGITAL SYSTEM DESIGN

[Common to VLSI\&ES (68), ES\&VLSI (48), VLSID \&ES (77), ES \&VLSID (81), VLSI (57), VLSID (72), VLSI System Design (61), VLSI \& Micro Electronics (76), Embedded

Systems (55) DECS (38), ECE (70), DECE (37), C\&CE (49),C\&C (39)and
Instrumentation And Control Systems (27)]
Time: 3 Hours
Max. Marks: 60
Answer any FIVE Questions
All Questions Carry Equal Marks

1. a Obtain the minimal expression using the tabular method and implement it in universal logic
$\mathrm{F}=\sum \mathrm{m}(0,1,3,4,5,7,10,13,14,15)$
b What is a K-map? What are its advantages and disadvantages?
2. a Explain the PLA design for the following $\mathrm{f}=\mathrm{x}^{\prime} \mathrm{y}^{\prime} \mathrm{z}+\mathrm{x}^{\prime} \mathrm{yz}+\mathrm{xyz}+\mathrm{xy} \mathrm{y}^{\prime} \mathrm{z}$.
b Compare ROM, PLA and PAL with respect to all features, programming aspects and applications.
3. a Draw an ASM chart to design the contro logic of a binary multiplier. Realize the design on PLA and use any other required flip-flops and logic.
4. a A two level AND-OR circuit has four AND gates feeding one OR gate. The four AND gates realize the product terms $\mathrm{x}_{1} \mathrm{x}_{3}{ }^{\prime} \mathrm{x}_{4}, \mathrm{x}_{2} \mathrm{x}_{4}, \mathrm{x}_{1}{ }^{\prime} \mathrm{x}_{3}{ }^{\prime} \mathrm{x}_{4}{ }^{\prime}$ and $\mathrm{x}_{1} \mathrm{x}_{2} \mathrm{x}_{3}$ respectively. Derive the a -test and b -test for detecting multiple stuck-at faults.
b Draw the 3-bit parity checker circuit. Using the path-sensitization method, find the test vectors for SA0 and SA1 faults on each line of the circuit.
5. a Determine the distinguishing sequence for the following machine M by conducting adaptive distinguishing experiment.

| PS | NS, Z |  |
| :--- | :--- | :--- |
|  | $X=0$ | $\mathrm{X}=$ |
| A | $\mathrm{C}, 0$ | $\mathrm{~A}, 1$ |
| B | $\mathrm{D}, 0$ | $\mathrm{C}, 1$ |
| C | $\mathrm{B}, 1$ | $\mathrm{D}, 1$ |
| D | $\mathrm{C}, 1$ | $\mathrm{~A}, 0$ |

b With suitable example explain how to construct homing tree.

## Code No: I6801/R16

6. a Write the steps in the minimization using the tabular method?
b With the help of maps, determine if the cubes
i) 2122
ii) 1001
iii) 2221
iv) 1212 are wholly within the function
$\mathrm{f}=0112+1002+1221+2112$
7. Find the simple column folding of the SSR table of a PLA. Draw the folded PLA.

| Columns | SSR |
| :--- | :--- |
| A | $3,6,8$ |
| B | $1,2,4,5,9,11$ |
| C | $1,3,6,7,9,10$ |
| D | $2,5,7,8,12$ |
| E | $1,3,6,11$ |
| F | $4,6,7,8,10$ |
| G | $1,3,5,7,9$ |
| H | $6,8,12$ |

8. a Briefly discuss about fault diagnosis and testing with flow diagram. 6M
b Find out shortest homing sequence for a given machine.

|  | $\mathrm{NS}, \mathrm{Z}$ |  |
| :--- | :--- | :--- |
|  | $\mathrm{X}=0$ | $\mathrm{X}=1$ |
| A | $\mathrm{A}, 1$ | $\mathrm{E}, 0$ |
| B | $\mathrm{A}, 0$ | $\mathrm{C}, 0$ |
| C | $\mathrm{B}, 0$ | $\mathrm{D}, 1$ |
| D | $\mathrm{C}, 1$ | $\mathrm{C}, 0$ |
| E | $\mathrm{C}, 0$ | $\mathrm{D}, 0$ |

*****

2 of 2

