#### Subject Code: H2103/R13 M. Tech –II Semester Regular/ Supply Examinations, October, 2015 FINITE ELEMENT METHOD (Common to TE, MD, MED, CAD/CAM, AMS and AM&MSD) Time: 3 Hours Max Marks: 60

#### Answer any FIVE questions All questions carry EQUAL marks \*\*\*\*

1. Construct the weak form and the quadratic potential if it exists for the following problem

Longitudinal deformation of a bar with an end spring:

$$-\frac{d}{dx}\left(a\frac{du}{dx}\right) = q \quad \text{for } 0 < x < L$$
$$u(0) = 0, \quad \left(a\frac{du}{dx} + ku\right)\Big|_{x=L} = P$$

where a and q are functions of x, and k and P are constants.

2. Compute the coefficient matrix and the right-hand side of the N-parameter Rayleigh-Ritz approximation of the equation  $-\frac{d}{dx}\left[(1+x)\frac{du}{dx}\right] = 0$  for 0 < x < 1u(0) = 0, u(1) = 1

Use algebraic polynomials for the approximation functions, Specialize your result for N=2 and compute the Ritz coefficients

- 3. For the problem shown
  - (a) Give the transformed element matrices
  - (b) Assembled element matrices
  - (c) The condensed matrix equations for the unknown generalized displacements and forces.



1 of 2

## Subject Code: H2103/R13

4. Write the finite element equations for the unknown temperatures of the following problem



- Determine the smallest natural frequency of a beam with damped ends, and o constant crosssectional area A, moment of inertia I, and length L, Use the symmetry and two Euler – Bernoulli beam elements in the half-beam
- 6. Determine the jacobian and the transformation equations for the following



- 7. The transverse displacement of a triangular bending element (w) is expressed as a complete third degree polynomial in x and y. The nodal degrees of freedom are the displacements and the partial derivatives. Determine whether the convergence requirements are satisfied by this model.
- 8. a) Discuss in detail serendipity and Lagrange interpolation functions
  - b) Explain how boundary conditions are handled in FEM
  - c) Derive the characteristic matrix for two dimensional fin

### Subject Code: H4303/R13

# M. Tech –II Semester Regular/ Supply Examinations, October, 2015 DIGITAL CONTROLLERS

## (Common to PE, P&ID, PE&ED, PE&D, EM&D)

## **Time: 3 Hours**

## Max Marks: 60

### Answer any FIVE questions All questions carry EQUAL marks \*\*\*\*

| ****         |        |                                                                              |            |  |
|--------------|--------|------------------------------------------------------------------------------|------------|--|
|              |        | b) Programmable Interconnect Point (PIP)                                     | [6*2=12]   |  |
| δ            |        | a) HDL programming                                                           |            |  |
| 0            | U      | Write a short notes on                                                       | [6]        |  |
| ,            | b      | Describe the Instruction set of C2xx DSP core                                | [0]        |  |
| 7            | a      | Define memory Explain the different types of memories                        | [0]<br>[6] |  |
|              |        | a) The FIC 10C01//1 Thiness<br>b) PIC 16C71 Analog to Digital Converter(ADC) | [6]        |  |
| 6            |        | explain about                                                                |            |  |
| (            | U      | Explain about Configurable logic block(CLB) and input/output block(IOB)      | [6]        |  |
| 5            | a<br>h | Explain the set Configurable lasis block(CLD) and invest/extent block(IOD)   | [0]        |  |
| 5            | 0      | Define EPGA Distinguish between CPLD and EPGA                                | [0]        |  |
| •            | u<br>h | Explain about the general Event Manager Information                          | [0]        |  |
| 4            | a      | Explain about Event manager in the DSP                                       | [0]        |  |
| J            | b      | Explain about Interrupt Control Registers                                    | [0]        |  |
| 3            | а      | Define Interrupt Discuss about Interrupt Hierarchy                           | [0]        |  |
|              | U      | C2xx core                                                                    | [6]        |  |
| Ζ            | a<br>h | What is meant by Manning, Explain about Code generation of DSP core          | [0]        |  |
| $\mathbf{r}$ | D      | With a neat sketch Explain about PIC 16C6X//X                                | [6]        |  |
|              | 1.     | controllers                                                                  | [6]        |  |
| 1            | а      | Define Micro controller, Explain the historical background of Micro          |            |  |

### Subject Code: H4502/R13 M. Tech –II Semester Regular/ Supply Examinations, October, 2015 IMAGE AND VIDEO PROCESSING (Com to SSP, DIP, CE&SP, IP, C&SP, SP&C, DECS, E&CE, DECE and CS) Time: 3 Hours Max Marks: 60

#### Answer any FIVE questions All questions carry EQUAL marks \*\*\*\*

- a) What is KL transform? What are the disadvantages of KL transform? Explain.
  b) Explain about Haar transform
- 2. a) Which criteria highlight certain features of the interest? Explain about it.b) Explain about the Image file formats.
- 3. a) What is high pass filter? Discuss about butter worth high pass filter.b) What is histogram matching? discuss
- 4. a) Differentiate between linear and nonlinear image restoration techniques.b) Discuss about Blind deconvolution.
- 5. What is clustering? Explain about different clustering techniques with examples.
- 6. a) What is redundancy in images? Discuss about Shannon Fano coding.b) Discuss about wavelet based image compression.
- 7. a) Explain about Photometric image formation.b) How sampling is done for video signals.
- 8. Explain about the following terms
  - a) Predictive coding
  - b) Region based motion estimation
  - c) Hadamard transformation

\*\*\*\*

## Subject Code: H5804/R13 M. Tech –II Semester Regular/ Supply Examinations, October, 2015

# OBJECT ORIENTED ANALYSIS AND DESIGN

# (Computer Science & Engineering)

# Time: 3 Hours

## Max Marks: 60

#### Answer any FIVE questions All questions carry EQUAL marks \*\*\*\*

| 1 | a) | Define software architecture. Explain the 4+1 view model of systems architecture.                                                                    | [6] |
|---|----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | b) | Explain the various relationships with UML notation.                                                                                                 | [6] |
| 2 | a) | Enumerate the steps to model different views of a system.                                                                                            | [6] |
|   | b) | How do you inter relate interfaces, types and roles?                                                                                                 | [6] |
| 3 | a) | Enumerate the steps to forward engineer a class diagram.                                                                                             | [0] |
|   | b) | Enumerate the steps to model logical database schema. Give all example class diagrams.                                                               | [6] |
| 4 | a) | Consider modeling a student information system. Consider the use case "student registers for a course". Draw a sequence diagram and explain briefly. | [6] |
|   | b) | Explain about collaboration diagrams. How are they contrasted with sequence diagrams? What is semantic equivalence with interaction diagrams?        | [6] |
| 5 | a) | Draw a use case diagram that depicts the context of a credit card validation system.<br>Explain briefly.                                             | [6] |
|   | b) | Explain the various relationships possible among use cases. Illustrate in UML notation.                                                              | [6] |
| 6 | a) | What are swimlanes? Explain with an activity diagram.                                                                                                | [6] |
| U | 1) |                                                                                                                                                      | [6] |
|   | b) | what are the various parts of a state? Explain briefly.                                                                                              | [6] |
| 7 | a) | Describe the various parts of a transition.                                                                                                          | [6] |
|   | b) | Explain in detail about the extensibility mechanisms in UML.                                                                                         | [6] |
| 8 | a) | Define component. What are the differences between components and classes?<br>How are component and interface related?                               | [6] |
|   | b) | Enumerate the steps to model an executable release. Illustrate with UML diagram.                                                                     | [6] |
|   |    |                                                                                                                                                      | r~1 |

\*\*\*\*