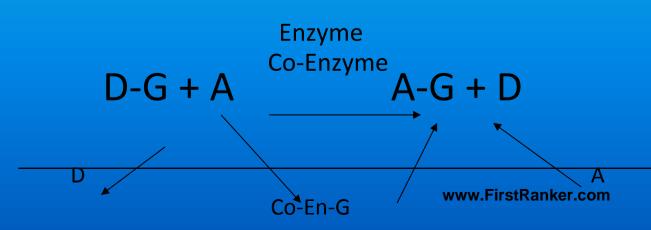
ENZYMES

- Biological catalysts which speed up the rate of reaction without becoming part of the reaction but themselves cannot initiate any chemical reaction
- Enzymes : First name is of substrate second, ending in "ASE" indicating type of reaction catalyzed
- Clarify the reaction , e.g.
- L- Malate + NAD \rightarrow Pyruvate + NADH-H + CO₂
- Malate NAD oxidoreductase (Decarboxylating)
- IUB Classification and Numbering
- Six major classes and 4-13 subclasses
- Numbering 1.2.3.4.5.6

ENZYMES


Nomenclature

- Oxidoreductases
 - Enzymes acting on CH-OH group
 - Alcohol NAD oxidoreductase [Alcohol dehydrogenase]
 - Alcohol + NAD= Aldehyde or Ketone + NADH.H
 - Glucose+ ATP =Glucose-6 phosphate + ADP
 - ATP.D.Hexose 6 Phosphotransferase (Hexokinase)

CO-FACTORS	OF ENZYMES
-------------------	------------

ENZYMES	CO FACTORS
	COTACIONS
Catalase Peroxidase Cytochrome oxidase	Iron Fe ²⁺ or Fe ³⁺
Cytochrome oxidase	Copper : Cu ⁺²
Carbonic anhydrase alcohol dehydrogenase	$Zinc: Zn^{2+}$
Hexokinase Glucose-6-phosphatase Pyruvate kinase	Magnesium Mg ²⁺
Arginase	Manganese Mn ²⁺
Pyruvate kinase	Potassium K ⁺
Urease	Nickel N 2 ⁺
Glutathione Peroxidase www.FirstRanker.com	Selenium : Se

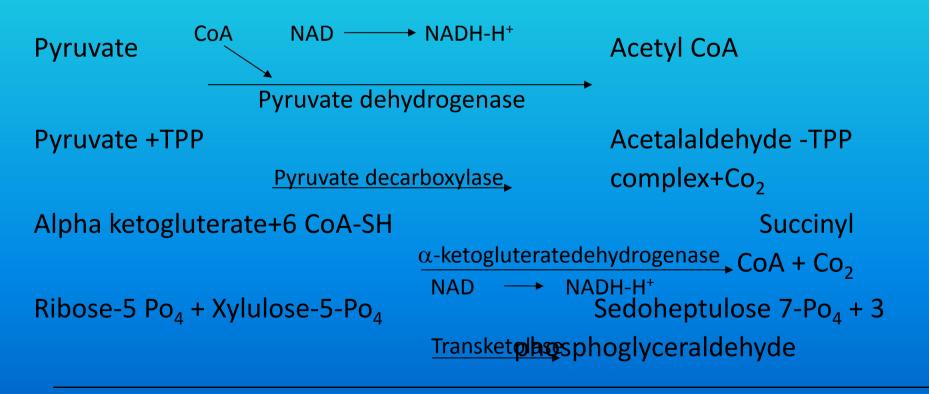
- Heat stable, low molecular weight organic compounds non-covalently linked with enzymes & can be separated. APO + CO = Holoenzyme
- If covalently linked to apoenzymes = prosthetic group
- Act as intermediate or ultimate acceptor in group transfer enzyme catalyzed reactions

CO ENZYMES	COENZYMES FOR TRANSFER
FOR TRANSFER	OF OTHER GROUPS
OF H ⁺	
NAD, NADP	SUGAR PHOSPHATES
FMN, FAD	THIAMINE PYROPHOSPHATE
	TPP, PYRIDOXAL PHOSPHATE
LIPOIC ACID	FOLATE AND COBAMIDE (VIT
	B ₁₂), BIOTIN
COENZYME, Q	LIPOIC ACID

REDUCTION OF NAD⁺ TO NADH.H⁺

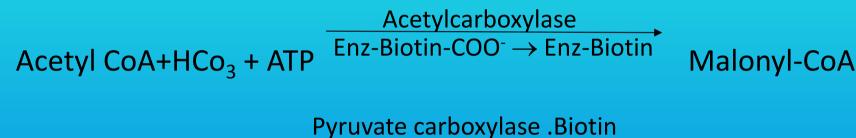
Lactic acid + NAD _____ Pyruvic acid + NADH-H⁺

Malic acid + NAD Malic dehydrogenase Oxalo acetic acid + NADH -H⁺ Glucose-6-phosphate + NADP <u>G-6-P.D</u>, 6-Phosphogluconolactone +NADPH-H⁺


REDUCTION OF FAD OR FMN TO FADH₂ OR FMNH₂

FMN is co enzyme for Cytochrome C oxidase, L.Amino acid dehydrogenase

FAD is co-enzyme for xanthene oxidase, acyl-CoA <u>dehydrogenase</u>


Thiamine Pyrophosphate:

Co-enzyme for oxidative decarboxylation for ketoacids

Biotin

 Part of multiunit enzymes causing carboxylation reactions. Acts as carrier of CO₂

Pyruvate+ HCo₃ + ATP

Oxaloacetate+

ADP+Pi

Carbamoyl Po₄.Synthetase - Biotin

 $NH_4 + HCo_3 + 2ATP$

CarbamoylPO₄ + 2 ADP+ 2 Pi

Synthesis of Purines and Pyrimiding StRanker.com

Ascorbic acid (Vitamin C)

- Strong reducing agent
 - Required for hydroxylation of proline into hydroxyproline for synthesis of collagen
 - Conversion of tyrosine into dopamine and into catecholamines (adrenaline and noradrenalin)
 - Bile acid formation
 - Conversion of cholesterol into 7-hydroxylcholesterol
 - Maintain metallic co-factors like Cu⁺ in Monooxygenases and Fe in dioxygenases in reduced form
 - Conversion of cholesterol into steroid hormone in adrenal cortex
 - Absorption of iron by reducing into reduced form which is can be easily absorbed
 - Acts as antioxidant in GIT by preventing formation of nitrosamines during digestion

Folic acid

 Active form is tetrahydrofolate which acts as single carbon carrier for synthesis of various compounds like pyrimidines and purines e.g. conversion of dUMP (deoxyuridylate) into dTMP (deoxythymidylate)

• Vitamin B₁₂

- Acts as co-enzyme in groups rearrangements in isomerases e.g. conversion of methyl malonyl CoA into succinyl-CoA by enzyme methylmalonyl-CoA mutase
- Converts homocystein into methionine
- Act as maturation factor for RBCs
 www.FirstRanker.com

CLASSIFICATION OF ENZYMES

- Formulated by the enzyme commission of I.U.B six major classes & 4-13 subclasses of each major class, based on the type of reactions catalyzed.
 - 1. Oxidoreductases
 - Catalyzing oxidation reduction reactions
 - 2. Transferases
 - Catalyzing group transfer
 - 3. Hydrolases

Catalyzing hydrolytic breakdown
 www.FirstBanker.com

CLASSIFICATION OF ENZYMES

- 4. Lyases
 - Catalyzing removal of groups by mechanism other than hydrolysis and leaving behind double bonds or adding groups to already existing double bonds.
- 5. Isomerases
 - Catalyzing interconversion of isomers
- 6. Ligases
 - Catalyzing formation of bonds and new compounds
- **1.Oxidoreductases**
- Catalyzing oxidation reduction reaction where one substrate is oxidized and other is reduced

Oxidases. Catalyzing oxidation of the substrate and atomic oxygen acts as recipient of hydrogen e.g. Ascorbic acid oxidase, Cytochrome oxidase, Tyrosinase

¹/₂ O₂ H₂ O Ascorbic acid Oxidase

Ascorbic acid

Dehydro ascorbic acid

Aerobic Dehydrogenases. Catalyzing oxidation of the substrate and molecular oxygen acts as recipients of hydrogen e.g. Glucose oxidase, L amino acid dehydrogenase, Xanthene dehydrogenase

> O₂ H₂ O₂ glucose Oxidase

Glucose

WWW.FirstRankeGoluconolactone

Anaerobic Dehydrogenases. Catalyzing oxidation of the substrate and coenzymes act as recipients of hydrogen e.g. Lactate Dehydrogenase with NAD and Glucose 6 phosphate dehydrogenase with NADP

Lactate dehydrogenase

Lactic acid

Pyruvic acid

+ NADH ·

Oxygenases. Catalyzing oxidation of the substrate and oxygen is added to the substrate eg are Homogentisate oxygenase, L Tryptophan dioxygenase

> Phenylalanine Hydroxylase

Phenylalanine NADPH – $H^+ + O_2$

Tyrosine NADP + H₂O

TRANSFERASES

Transaminases. Catalyzing transfer of amino group between an amino acid and a ketoacid e.g. Aspartate Transaminase (AST), Alanine Transaminase (ALT)

 Aspartate

 Transaminase (AST)

 Glutamic acid +

 +

 Oxalo acetic acid

 Alanine

Transaminase (ALT)

Glutamic acid +

 α ketoglutaric acid

Pyruvic acid

www.FirstRanker.com

Alanine

TRANSFERASES

Transmethylases. Catalyzing transfer of methyl group between to substrates e.g. COMT Catechol O Methyltransferase (COMT)

Noradrenaline

Adrenaline

+ CH₃

Transpeptidases. Catalyzing transfer of amino acids to substrates e.g. Benzyl-SCoA transpeptidase

Benzyl-SCoA Transpeptidase

Benzyl - SCoA + Glycine

Hippuric acid

TRANSFERASES

Phosphotransferases. Catalyzing transfer of phosphate group to substrates e.g. Hexokinase, Glucokinase

2.7.1.1 ATP D hexose- 6 Phosphotransferase [Hexokinase]

ATP + Glucose Hexokinase → ADP + D-Glucose – 6-P

<u>Acetyltransferase</u>. Catalyzing transfer of acetyl group to substrates e.g. Choline Acetyltransferase

Acetyl-CoA+ Choline \rightarrow CoA + A E B to the choline

HYDROLASES

• Catalyzing hydrolytic breakdown of different bonds. Most of the GIT enzymes belong to this class

Enzymes hydrolyzing Carbohydrates

Polysacch	naridases				
Starch	Amylase	Maltose, Ma	Maltose, Maltotrios, Dextrins		
<u>Oligosac</u>	haridases	5			
Dextrins	Dex	xtrinase	Glucose		
Disachari	dases –		\rightarrow		
Maltose, La	actose, Sucr	ose Disacharida	ases (Maltase, Lactase, Sucrase) Monosaccharides		
Enzymes	Hydrolys	ing Lipids			
Triacyl gly	ycerol	Lipase	Monoacyl glycerol + 2 F.F.A		
Cholester	ol ester	Cholesterol Esterase	Free Cholesterol + FFA		
			www.FirstRanker.com		

HYDROLASES

Phospholipids Phospholipase Lysophospholipids

Lecithin Lysolecithin

Enzymes Acting on Peptide Bonds

Exopeptidases Carboxypeptidase Amino acids
Aminopeptidase

Endopeptidase

e.g. Pepsin

Smaller Peptides

HYDROLASES

- **<u>Tripeptidase</u>** : Tripeptide \rightarrow A.A
- **<u>Dipeptidase</u>**: Dipeptide \rightarrow AA

Phosphatases

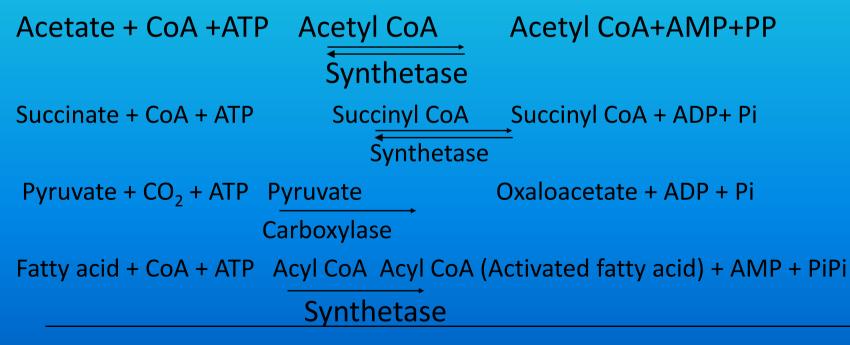
- i. <u>Phosphomonoesterases:</u>
- Glucose 6.P. + H_2O G 6. Phosphate Glucose + Pi Phosphatase
- ii. <u>Phosphodiesterases:</u>

Removal of phosphate Group of diesters breakdown of 3'-5' p linkages in cyclic AMP

LYASES

 Catalyzing reactions in which groups are removed without hydrolysis leaving a double bond or add groups to already existing double bonds

CH3. CO. COOH Pyruvate CH3. CHO+ CO2 (Acetaldehyde) (Pyruvate) Decarboxylase T.P.P


COOH.CH = CH. COOH F<u>umerase COOH</u>-CHOH. CH2-COOH (Malic Acid) (Fumaric acid)

ISOMERASES

- Involved in inter conversion of pair of isomeric compounds
- Glucose 6. P Phosphogluco glucose I.P **Mutase** Phosphohexose Glucose 6.P Fructose 6.P Isomerase All trans retinene 11- CIS retinene Retinene ۲ lsomerase **UDP** glucose **UDP** – Galactose UDPG-4 FirstRanker.com

LIGASES

 Catalyze reactions in which linking together of two molecules occur coupled with the breakdown of a high energy phosphate bonds like ATP, GTP

MECHANISM OF ACTION

- S+E \longrightarrow E-S \longrightarrow P
- D-G + A Enzyme (Enzyme G) A-G + D ES

• Factors affecting enzyme activity

- Enzyme concentration
- Substrate concentration
- Temperature
- pH
- Enzyme inhibitors

MICHEALIS – MENTON EQUATION

 $V_i = V max [S]$

Km + {S}

- V_i = Measured initial velocity
- V max = Maximum velocity
- S = Substrate
- Km = Michaelis constant
- Variations

A. When (S) is much less than Km

Vi = <u>V max [S]</u> OR <u>V max</u> [S] K [S] Km + {S} Km

So Vi depends upon substratemonenteation

ENZYME KINETICS

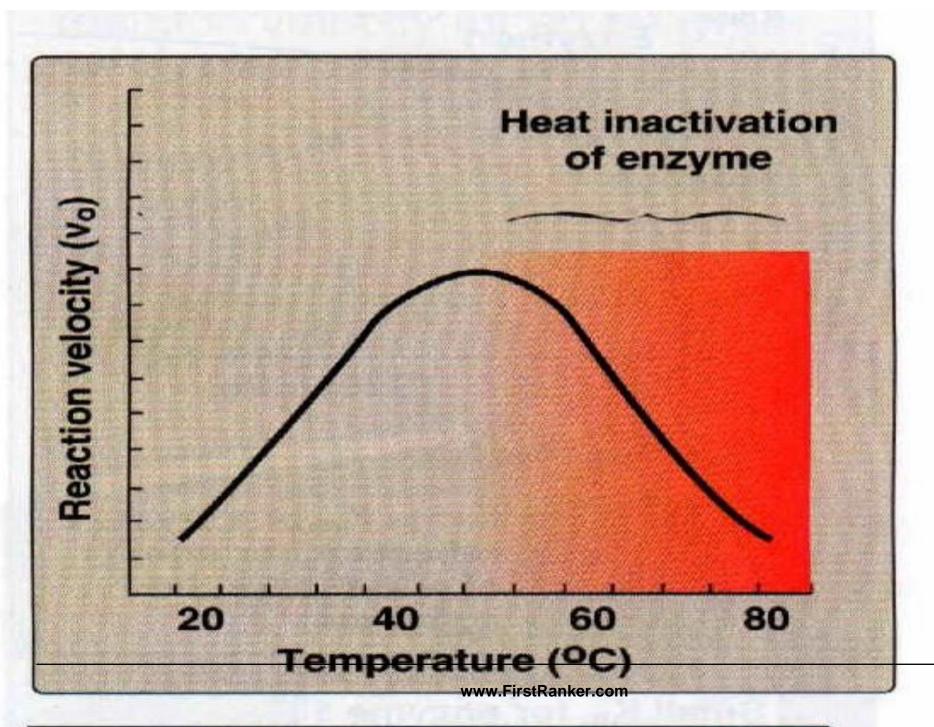
B. When substrate concentration is much greater than Km

Or Vmax = Vi

2 [S]

C. When substrate concentration is equal to Km

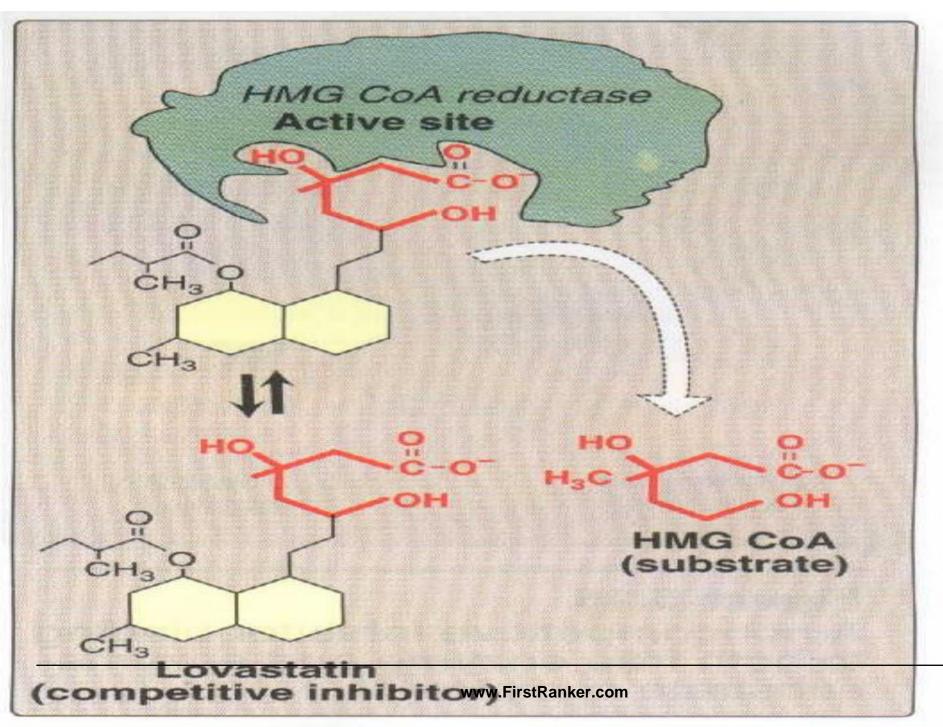
So Vi = half of maximum velocity. FirstRanker.co


Enzyme Catalysis

- Catalysis by Proximity : Higher conc of "S" will increase their proximity to each other thereby promoting enhanced binding to enzyme resulting in increased catalysis
- Acid-Base Catalysis : Ionizable functional gps of aminoacyl side chains & prosthetic gps can act as acids or bases. In "specific acid or base catalysis" rate of reaction is sensitive to changes in protons, but is independent of conc of other acids or bases present in the solution or at active site. In "general acid or base catalysis" reaction rates are sensitive to all acids & bases presenting antercom

Enzyme Catalysis

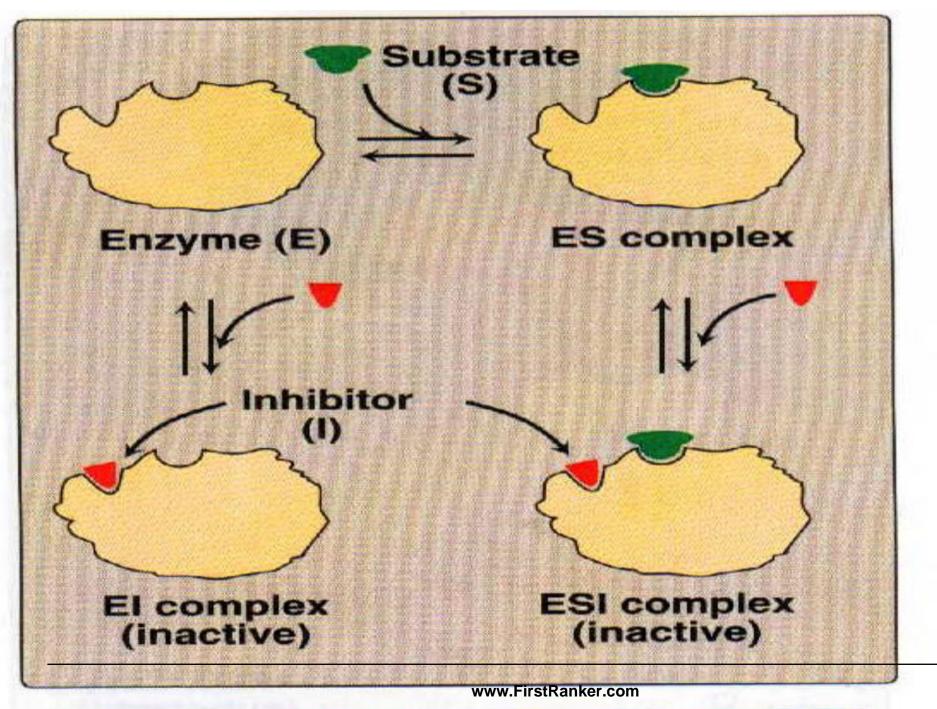
- Catalysis by Strain : Binding of Enzyme to substrates whose covalent bond are to be cleaved in an unfavorable configuration thereby exerting strain on the bonds ,stretching or distorting bonds.
- Covalent Catalysis: Formation of transient covalent bond between enzyme & substrate(s) makes it more reactant & introduces a new faster pathway of catalysis with much lowered energy of activation. On completion of reaction, enzyme returns to its original state. Cysteine, serine or histidine residues on enzyme participate in covalent catalysis


ENZYME INHIBITION

- Competitive inhibition
- Non competitive inhibition
- Irreversible inhibition

Competitive inhibition

- Inhibitors resemble substrate, Km is increased no change in Vmax
- Succinate _____Enz___ Fumarate
- Malonate (structural analog of Succinate) <u>Enz inhibition</u> no product
- Drug Allopurinol, structural analog of Xanthene is used for treatment of gout /hyperuricemia as it is a competitive inhibitor of enzyme Xanthene oxidase which normally converts Xanthene into Uric acid
- Addition of excess of normal [S]. Will key erse this inhibition



ENZYME INHIBITION

NON COMPETITIVE INHIBITION

- Inhibitor binds on separate site on enzyme therefore no • competition with substrate. Vmax is reduced and no change in Km
- Inhibitor can bind with either free enzyme or enzyme substrate complex and in both cases render these inactive
- Lead poisoning is an example of this inhibition and it \mathbf{O} inhibits enzyme Ferrochelatase which adds iron molecule to the centre of porphyrin ring in the synthesis of Hemoglobin

IRREVERSIBLE INHIBITION

- Permanent covalent linkage with enzyme rendering it irreversibly inhibited
- Diisopropyl phospho fluoride (DIPF)
- Iodoacetamide
- Heavy metal [Ag⁺ Hg⁺²], Silver, Mercury
- Oxidizing agents
- Covalent linkage with enzyme: inactivation of enzyme
- Kinetics are same as of non competitive inhibition, therefore difficult to distinguish between the two
- Examples are insecticides which act as enzyme poisons for the insects & disinfectants. Used for micro-organisms

REGULATION OF ENZYME ACTIVITY

 3 main mechanism in regulation
 A. Rate of synthesis and degradation determine enzyme quantity

synthesis

Amino acids

Enzyme

Degradation

www.FirstRanker.com

REGULATION OF ENZYME ACTIVITY

B. INDUCTION OF ENZYME SYNTHESIS

In bacteria \rightarrow glucose \rightarrow no Beta galactosidase lactose \rightarrow induction of B-

galactosidase

In animals \rightarrow Enzymes of Urea Cycle

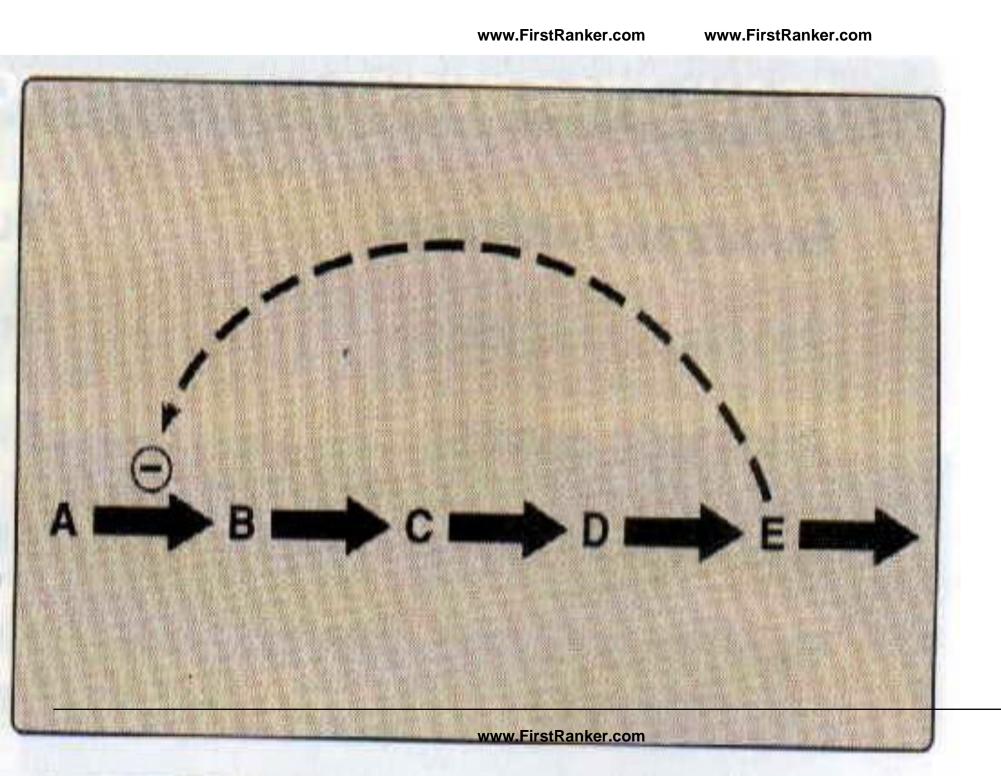
→ HMG CoA reductase in Cholesterol synthesis

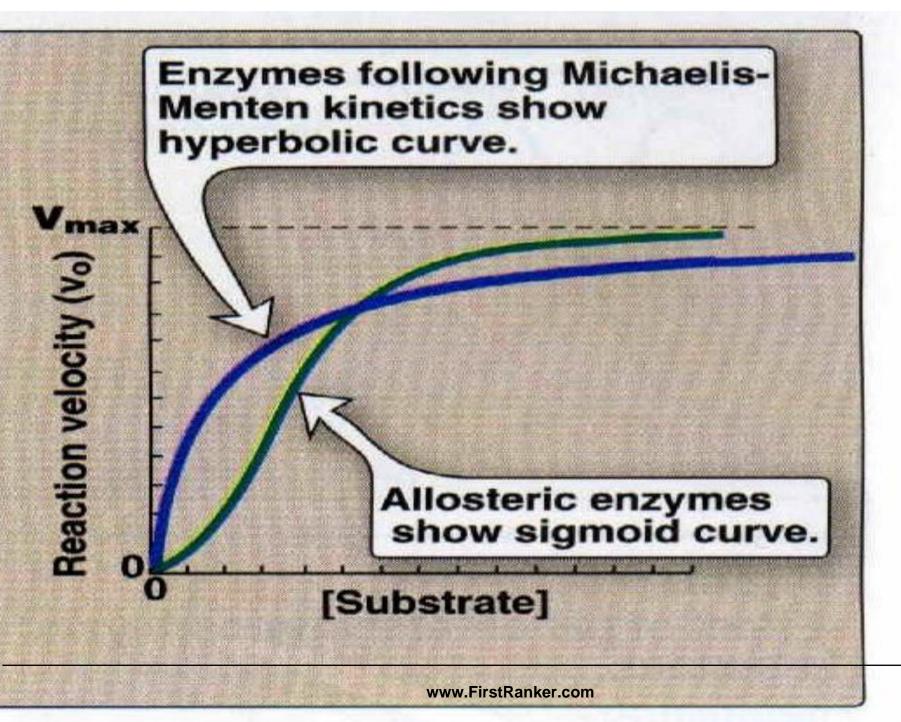
 \rightarrow Sucrase or invertase for Sucrose

REGULATION OF ENZYME ACTIVITY

- **C. REPRESSION OF ENZYME SYNTHESIS**
- In bacteria \rightarrow glucose \rightarrow repression of B- Galactosidase
- S typhimurium → Histidine → Repression of enzyme for histidine : product feed back repression
 HMG CoA Reductase: Induction or stimulation of synthesis = fed state or insulin effect
 Repression of synthesis = fasting or starvation
- Hormone sensitive Lipoprotein lipase : Induction or stimulation =adrenalin, cortisol, fasting, stress

```
Repression = insulin, fed state
```


ALLOSTERIC REGULATION


• Low molecular wt allosteric effectors structurally not similar to substrate

$$\begin{array}{ccc} \mathsf{E}_1 & \mathsf{E}_2 & \mathsf{E}_3 \\ \mathsf{A} \xrightarrow{} & \mathsf{B} \xrightarrow{} & \mathsf{C} \xrightarrow{} \mathsf{D} \end{array}$$

Bind at sites other than active site leading to feed back inhibition

Usually product or last small molecule before macromolecules in biosynthesis

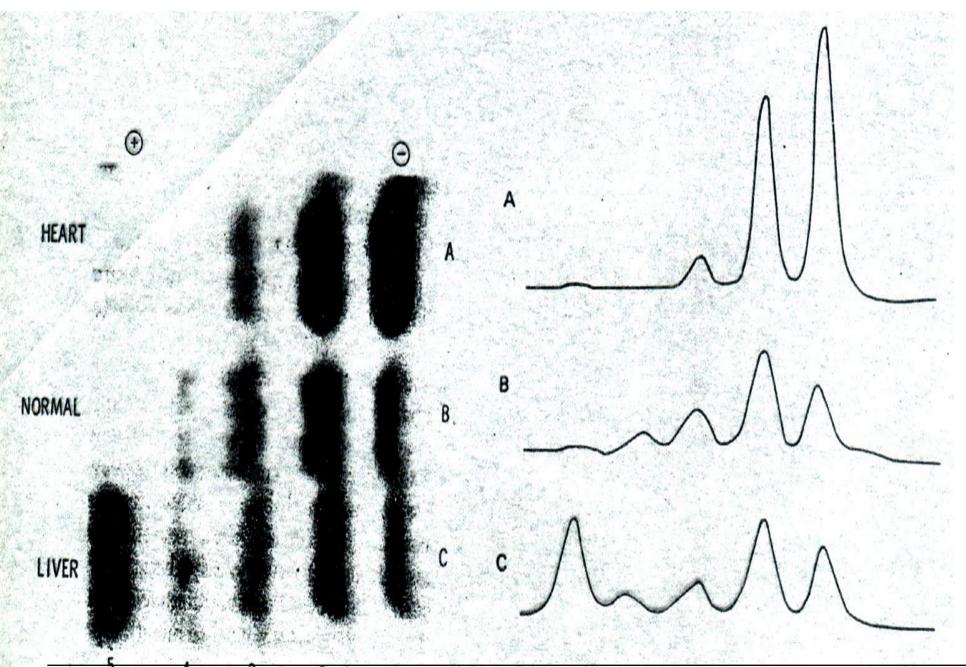
PROENZYMES

Inactive enzymes initially secreted as large molecules, active site not exposed

PROENZYMES

- Required for control of catalytic activity of enzymes so that catalytic activities only occur when required
- Pancreatic enzymes if all the time active = auto digestion of pancreas
- Blood clot lysis enzymes only active when blood clot is formed

Examples of Pro enzymes


- Pepsinogen
- Trypsinogen
- Profibrolysin

www.FirstRanker.com

ISOENZYMES

- Physically distinct forms or protomers of an oligmeric enzyme which can occur in different tissues of same organs, in different cell types, or in sub cellular compartments catalyzing same reaction. these can be separated by electrophoresis.
- Lactate dehydrogenase on electrophoresis gives 5 different bands and has 4 protomers

2

3

CREATININE KINASE (CK): ISOENZYMES

CK1	BB	OCCURS IN BRAIN,SMOOTH MUSCLES of GIT AND URINARY TRACT
CK2	MB	MYOCARDIUM (35 %), SK MUSCLE (5%) ↑ IN ACUTE MI
СКЗ	MM	OCCURS IN SK MUSCLES T IN MUSCLE DYSTROPHIES
	www.FirstRanker.com	

5

LACTATE DEHYDROGENASE: ISOENZYMES

LDH 1	HHHH	Occurs in myocardium(aerobic tissues) 1 Acute Myocardial Infarction
LDH 2	HHHM	↑ In Acute Leukemia
LDH 3	HHMM	↑ In Acute Leukemia
LDH 4	HMMM	Occurs in muscle and liver (anaerobic tissues)
LDH 5	MMMM	Occurs in muscle and liver (anaerobic tissues) ↑ in Liver Diseases
		www.FirstRanker.com

- <u>CLASSIFICATION OF ENZYMES IN BLOOD</u>
 - PLASMA SPECIFIC ENZYMES: PROCOAGULANTS,
 FIBRINOALYTIC ENZYMES
 - SECRETED ENZYMES: LIPASE, α -AMYLASE, ACID PHOSPHATASE
 - TRUE CELLULAR ENZYMES: LDH, ALT, AST, ALP

- STUDY OF PLASMA ENZYME LEVELS IN THE DIAGNOSIS OF VARIOUS DISEASES
- PLASMA ENZYME LEVEL DEPENDS ON
 - RATE OF RELEASE FROM DAMAGED CELL
 - EXTENT OF CELL DAMAGE
- IN THE ABSENCE OF CELL DAMAGE, IT DEPENDS ON
 - RATE OF CELL PROLIFERATION
 - DEGREE OF INDUCTION OF ENZYME SYNTHESIS
 - RATE OF ENZYME CLEARANCE FROM CIRCULATION

PHYSIOLOGICAL FACTORS/VARIATIONS

- PLASMA AST IS INCREASED IN NEONATES
- ALKALINE PHOSPHATASE IS INCREASED IN CHILDREN AND IN LAST TRIMESTER OF PREGNANCY
- TRANSAMINASES AND CREATINE KINASE INCREASED AFTER LABOUR

CLINICAL ENZYMOLOGY MYOCARDIAL DISEASES

- <u>CREATINE PHOSPHOKINASE(CK,CPK)</u> - PRESENT IN HEART, SKELETAL
 - MUSCLES
 - NORMAL LEVEL TOTAL: LESS THAN 195 U/L
 - MODERATE INCREASE
 - MUSCLE INJURY
 - AFTER EXERTION
 - AFTER SURGERY

CLINICAL ENZYMOLOGY MYOCARDIAL DISEASES

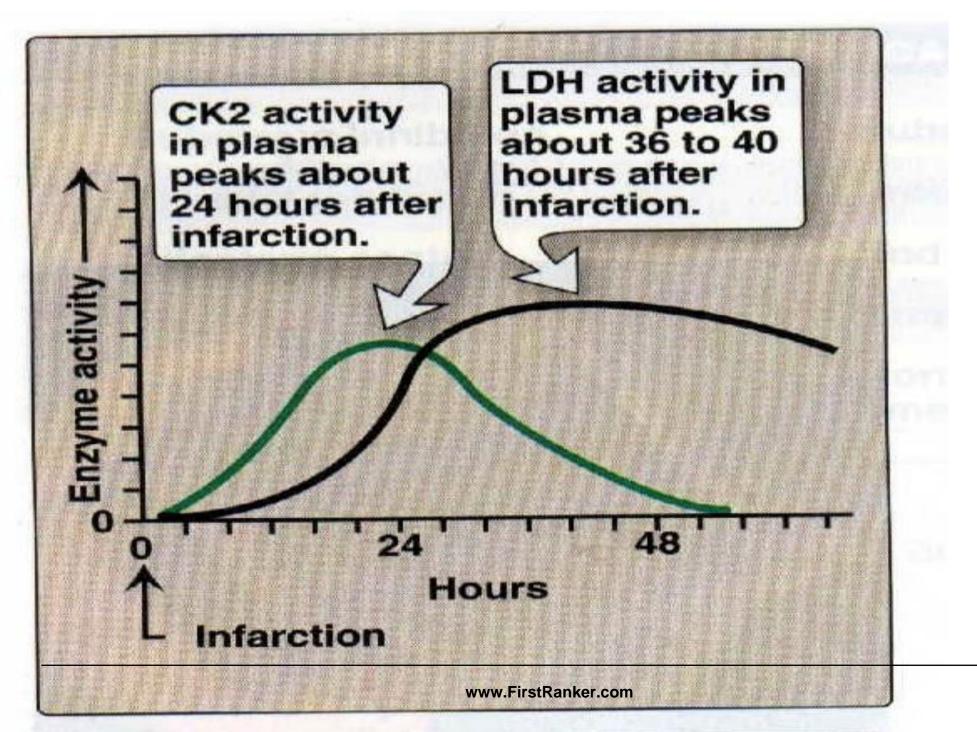
-SIGNIFICANT INCREASE

- MYOCARDIAL INFARCTION
- 4-8 HRS AFTER THE ATTACK
- PEAK 24-48 HRS
- NORMALIZES WITHIN 3-5 DAYS(IF NO FRESH ATTACK HAS OCCURRED)
- CIRCULATORY FAILURE
- MUSCLE DYSTROPHIES

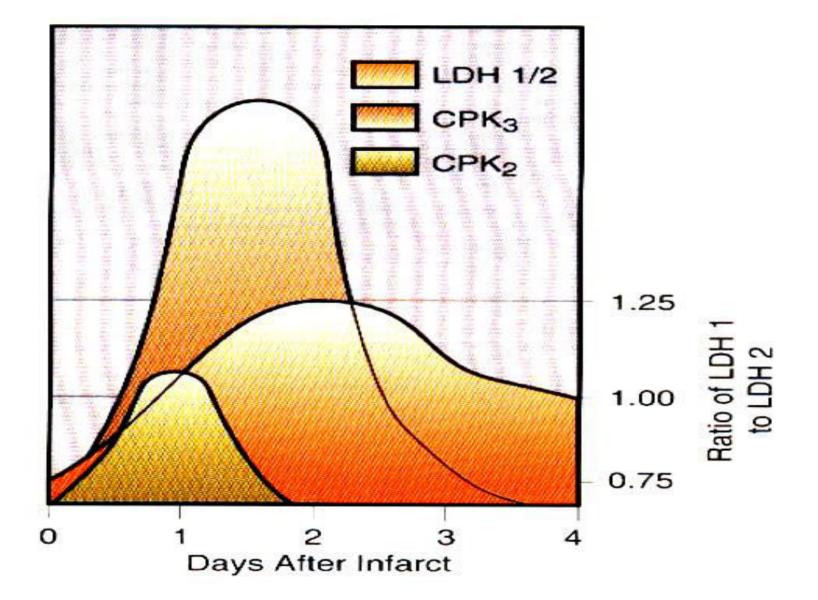
www.FirstRanker.com

CLINICAL ENZYMOLOGY MYOCARDIAL DISEASES

LACTATE DEHYDROGENASE (LDH,LD)


- PRESENT IN HEART SKELETAL MUSCLE, LIVER AND KIDNEYS
- NORMAL SERUM LEVEL 125-220 U/L

- MODERATE INCREASE


- VIRAL HEPATITIS
- SKELETAL MUSCLE DISEASE
- MALIGNANCY OF ANY TISSUE
- SIGNIFICANT INCREASE
 - MYOCARDIAL INFARCTION
 - 24-48 HRS AFTER THE ATTACK
 - **PEAK = 2-3 DAYS**
 - NORMALIZES 7-12 DAYS(IF NO FRESH ATTACK HAS OCCURRED)

www.FirstRanker.com

www.FirstRanker.com

Characteristic changes in serum CPK and LDH isozymes following a myocardial infarction.

TRANSAMINASES

NORMAL LEVELS	<u>AST (U/L)</u>	<u>ALT(U/L)</u>
MALES 20-60 YRS:	LESS THAN 40	LESS THAN 45
OVER 60 YRS	: 35	40
FEMALES:	35	40
PREGNANCY	40	40
3RD TRIMESTER:		

ASPARTATE TRANSAMINASE (AST OR SGOT)

 PRESENT IN HEART, LIVER, MUSCLES, KIDNEYS, RBCs, MITOCHONDRIAL AND CYTOSOLIC ENZYME

- MODERATE INCREASE

- **CIRRHOSIS OF LIVER**
- SKELETAL MUSCLE DISEASE
- AFTER TRAUMA OR SURGERY
- SIGNIFICANT INCREASE
 - MYOCARDIAL INFARCTION
 - 8-12 HRS AFTER THE ATTACK
 - **PEAK = 24 HRS**
 - NORMALIZES 5-6 DAYS

CLINICAL ENZYMOLOGY LIVER DISEASES

ALANINE TRANSAMINASE (ALT OR SGPT)

- PRESENT IN LIVER, SKELETAL MUSCLE, KIDNEYS & HEART, CYTOSOLIC ENZYME
- MODERATE INCREASE
 - CIRRHOSIS OF LIVER
 - LIVER CONGESTION
 - CONGESTIVE CARDIAC FAILURE
 - JAUNDICE
 - CIRCULATORY FAILURE
- SIGNIFICANT INCREASE
 - ACUTE VIRAL OR TOXIC HEPATITIS

www.FirstRanker.com www.FirstRanker.com

CLINICAL ENZYMOLOGY LIVER DISEASES

- <u>ALKALINE PHOSPHATASE (ALP)</u>
- PRESENT IN BONE, HEPATOBILIARY, INTESTINAL TRACT, RENAL TUBULES & PLACENTA
- NORMAL SERUM LEVELS
- MALES: 40-258 U/L
- FEMALES: 35-258 U/L

LIVER DISEASES

ALKALINE PHOSPHATASE (ALP)

• SIGNIFICANT INCREASE

- BONE DISEASES LIKE OSTEOMALACIA, RICKETS, PAGET'S OSTEOGENIC CARCINOMA & SECONDARY DEPOSITS IN BONE.
- LIVER DISEASES LIKE CHOLESTATIC JAUNDICE, TUMOR OR DRUG INTOXICATION
- TUMOR: BONE OR LIVER, DIRECT OR SECONDARY DEPOSITS

LIVER DISEASES

ALKALINE PHOSPHATASE (ALP)

• SIGNIFICANT INCREASE

- BONE DISEASES LIKE OSTEOMALACIA, RICKETS, PAGET'S OSTEOGENIC CARCINOMA & SECONDARY DEPOSITS IN BONE.
- LIVER DISEASES LIKE CHOLESTATIC JAUNDICE, TUMOR OR DRUG INTOXICATION
- TUMOR: BONE OR LIVER, DIRECT OR SECONDARY DEPOSITS

CLINICAL ENZYMOLOGY LIVER DISEASES

- <u>GAMA GLUTAMYL TRANSFERASE (yGT)</u>
- PRESENT IN LIVER, KIDNEYS, PANCREAS AND PROSTATE
- NORMAL SERUM LEVELS: MALES 30 U/L
 FEMALES < 25 U/L
- SIGNIFICANT INCREASE
- INDUCTION BY ALCOHALS AND DRUGS LIKE
 PHENOBARBITONE
- CHRONIC ALCOHALIC HEPATITIS
- CHOLESTATIC LIVER DISEASE

CLINICAL ENZYMOLOGY LIVER DISEASES

- <u>CHOLENESTERASE</u>
- PRESENT IN NERVOUS TISSUE AND RBCs. AND IN LIVER
- NORMAL SERUM LEVEL 0.6-2.4 U/L
- SIGNIFICANT DECREASE
- ORGANOPHOSPHORUS INSECTISIDE PIOSONING
- LIVER DISEASE

AMYLASE

- PRESENT IN SALIVA AND PANCREATIC JUICE. MAY BE EXTRACTED FROM GONADS, SKELETAL MUSCLES AND ADIPOSE TISSUE
- NORMAL SERUM LEVEL 28 –100 U/L
- **MODERATE INCREASE**
- ACTUE CHOLECYSTITIS
- INTESTINAL OBSTRUCTION
- MUMPS
- SALIVARY CALCULI
- ABDOMINAL TRAUMA

SIGNIFICANT INCREASE

- ACUTE PANCREATITIS
- PERFORATED PEPTIC ULCER

ACID PHOSPHATASE (ACP)

- PRESENT IN PROSTATE LIVER, R.B.C. PLATELETS
- NORMAL SERUM LEVEL UPTO 4 U/L
- MODERATE INCREASE
- AFTER RECTAL EXAMINATION
- AFTER PASSAGE OF CATHETER
- SIGNIFICANT INCREASE
- CARCINOMA OF PROSTATE
- BONE DISEASE LIKE PAGET'S DISEASE

ISOCITRIC DEHYDROGENASE

- LIVER AND CEREBRAL TUMORS, MENINGITIS
- LEUCINE AMINOPOLYPEPTIDASE
- HEPATOBILIARY AND PANCREATIC DISEASE

• <u>5, NUCLEOTIDASE</u>

- OBSTRUCTIVE JAUNDICE
- GLUTATHIONE REDUCTASE
- HEPATITIS AND MALIGNANCY
- <u>ALDOLASE</u>
- PSEUDOHYPERTROPHIC MUSCULAR DYSTROPHIES

CLINICAL APPLICATIONS OF ENZYMES

- PROTEASES, RNASES ARE USED IN DEBRIDEMENT OF WOUNDS
- STREPTOKINASE USED FOR CLEARING BLOOD CLOTS AFTER ACUTE MYOCARDIAL INFARCTION & IN LOWER EXTREMITIES. IT ACTIVATES PLASMINOGEN INTO PLASMIN, A SERINE PROTEASE THAT CLEAVES FIBRIN IN BLOOD CLOTS INTO SEVERAL SMALLER SOLUBLE COMPONENTS.

CLINICAL APPLICATIONS OF ENZYMES

 t-PA(HUMAN TISSUE PLASMINOGEN ACTIVATOR) COMERCIALLY PRODUCED FROM 'E.coli' IS USED IN DISSOLVING BLOOD CLOTS IN ACUTE MI BY ACTIVATING PLASMINOGEN INTO PLASMIN.