MINERALS

www.FirstRanker.com

MINERAL (CONT.)

- 2 types
- Macro Mineral
- Micro Mineral

MACRO - MINERAL

- Requirement more than 100mg per day.
 Example.
 - Sodium
 - Potassium
 - Calcium
 - Magnesium
 - Chloride

Nat

- Sodium is the principal cation of extra cellular fluid.
- It is found in all types of foods.
- (RDA) is 5-10 gms.
- It is excreted in the urine.
- The concentrations are maintained by Aldosterone.

- Potassium is intracellular cation; daily requirement is 1 gm/day. Its excretion is through kidney,
- linked to sodium excretion.

FINCTIONS OF Na+ and K+

- maintains ECF balance.
- Nerve conduction
- Muscle contraction
- Sodium is exchanged with Hydrogen in renal tubules to acidify urine.
- Sodium pump keeps sodium in far higher concentration outside the cell, create resting membrane potential.
- Sodium and Potassium maintain the degree of hydration of plasma proteins, and there by viscosity of blood.
- Potassium is important for functioning of cardiac muscle.

- HYPER NATREMIA
- HYPO NATREMIA
- HYPER KALEMIA
- HYPO KALEMIA

Cat and Pttt

- Mostly found in the bone.
- Lesser amount found in the soft tissues, teeth and ECF.

SOURCES OF Ca AND P

- Milk, milk products, green leafy vegetables are rich in calcium.
- Phosphate is widely distributed in nature.

 Calcium: RDA 500mg for adults and 1200mg for children, 1500mg for post-menopausal women.

ABSORPTION INCREASED BY

- cidic pH solubilizes Calcium salts, promote absorption.
- High protein diet favors absorption
- Vitamin D
- PTH, Calcitonin
- Normal blood concentration is critically maintained at 9-11 mg %

ABSORPTION DECREASED BY

- high fiber diet, oxalates
- Glucocorticoids

FUNCTIONS

- Calcification of bones and teeth.
- blood coagulation
- Neuromuscular transmission.
- Muscle contraction
- Acts as secondary messenger in hormone action

- Phosphorus: Dietary sources are cheese, milk, nuts. Eggs and organ meats.
- Absorption and regulation is similar to that of Calcium

FUNCTIONS

- Constituent of bone and teeth
- Needed for the synthesis of energy rich molecules like ATP and Creatin phosphate.
- It forms Phosphate buffer in blood.
- Constituent of phospholipids, biomolecules and coenzymes (TPP)

TRACE ELEMENTS

 Daily requirements of some elements is very very less.

IRON

- In body it is found in
 - Haemoglobin
 - Myoglobin
 - Ferritin
 - Hemosiderin
 - Transferrine
 - cytochromes

- RDA is 10-20mgs.
- Sources are meat, fish, eggs, cereals & green leafy vegetables.
- Milk is deficient in Iron.

ABSORPTION IS THROUGH INTESTINAL MUCOSA

- It combines with intracellular binding protein Apoferritin to ferritin. Almost 300 ferric ions can bind to one molecule of apoferritin..
- For transport, free iron binds to Apo transferrin, in blood to form transferrin. It is the major
- transport form of iron. It also prevents toxicity of free iron.

HEMOSIDROSIS

- Excessive binding of iron causes denaturation of ferritin molecule. It undergoes aggregation, to form hemosiderin.
- Mobilization of iron from hemosiderin is very slow. accumulation of hemosiderin is known as hemosiderosis.

 Massive deposits of hemosiderin in tissues lead to hemachromatosis.

HARMFUL EFFECT OF HEMACHROMATOSIS:

• Damage to:

- liver,
- pancreas, it damages ß cells, result in Bronze diabetes.
- skin of the patient has bronze coloration.
- Oxidative damage to cardiac muscle is a biggest concern.

Iron is stored in liver, spleen and bone marrow

CAUSES OF IRON DEFICIENCY:

- Reduced dietary intake.
- Hemolysis
- Children who are on milk diet only are prone to iron deficiency.
- Chronic bleeding, irregular menstrual cycles
- Peptic ulcer, piles
- Hook worm infection
- Repeated malarial infections.

- Deficiency leads to Iron deficiency anaemia or hypochromic microcytic anaemia.
- It is associated with low hemoglobin and ferritin

- Humans contain around 100 mgs of copper.
 Liver, brain, kidney and heart are rich in copper.
- Free copper is 4%, 96 % is bound to Ceruloplasmin in body.
- Sources: cereals, legumes, raisins, nuts etc

FUNCTIONS

- Cofactor of enzymes like:
- cytochrome oxidase
- dopamine decarboxylase
- Tyrosinase
- Cyt.C oxidase
- superoxide dismutase
- monoamine oxidases
- Tyrosyl oxidase

COPPER DEFICIENCY:

- Causes anaemia. (Microcytic, normochromic anemia)
- Failure of melanin formation because tyrosine oxidase becomes inactive.

• Menke's disease or Kinky hair syndrome:

- It is fatal sex linked recessive disorder in which there is cerebral and cerebellar degeneration,
- connective tissue abnormalities and kinky hair.
- Both serum [Copper] and [Ceruloplasmin] is low.

- Wilson's disease: It is an Autosomal, recessive disorder. There is a decrease in the biliary
- excretion of copper. Blood and tissue copper is high in these patients.

 It leads to retention of copper, followed by hepato-lenticular degeneration.

MAGNESIUM

Sources:

- Vegetables
- Cereals
- Beans
- Potatoes
- Cheese
- animal tissues

- It is absorbed from the small bowel.
- It is excreted through feces, urine and sweat.

FUNCTIONS

- It is a cofactor for peptidases, ribonucleases, glycolytic enzymes
- High levels depress nerve conduction, low levels may cause Tetany.
- Major part is found in bones. In teeth, it is present as dentin and enamel.

FLUORINE

- It is solely derived from water, tea, and fish
- Daily intake should not be more than 3mg.
- It is absorbed by diffusion from intestine
- Mostly it is found in the bones and teeth.
- It is eliminated in the urine.

- important for tooth development
- prevention of Dental Caries.
- promotes bone development,
- increases retention of calcium and phosphate, prevent osteoporosis

FLUROSIS

- is due to toxicity of fluoride
- It damages mitochondria
- Inhibit enzymes which depend on Mg, like Succinic dehydrogenase.
- Protein synthesis decreases in muscle, heart, kidney, lungs, pancreas and spleen.
- Collagen synthesis is adversely affected.

IODINE

- Sources:
- Vegetables, fruits obtained from sea shore, sea fish are rich in iodine. People who live
- on hills do not get iodine from diet. They are prone to suffer from deficiency.
- It is absorbed from small intestines and transported as protein complex in plasma.

FUNCTION OF

Synthesis of thyroid hormone

ZINC

- Sources are liver, milk, fish, dairy products, cereals, legumes, pulses, and spinach etc.
- It is absorbed in duodenum and ileum.
 Absorption of Zinc from the intestine
- It is transported bound to a protein (α2macroglobulin and transferrin)
- RDA is 15-20mgs for adult, 3-15mgs for infants and children

- Zinc is important for the activity of a number of enzymes like
 - Carbonic anhydrase
 - DNA, RNA polymerases
- Release of vitamin A from liver requires Zinc.
- participates in the regeneration of rhodopsin (visual cycle).
- Insulin is secreted, stored as a complex of Zinc
- Helps in wound healing.

DEFICIENCY OF ZINC:

- Results in dwarfism and hypogonadism
- Delayed sexual development
- It decreases spermatogenesis in males
- irregular menstrual cycles in females.
- Hepatosplenomegaly

- Selenium is rich in liver, kidney, finger nails.
 Usually plant products are good sources than
- animal based diet.
- It is absorbed from duodenum, transported as selenomethionine. It forms a complex with
- plasma proteins for transport. In tissues, free selenium is released.
- It is excreted in urine.
- RDA 50-100 μg Adult

- Glutathione peroxidase is a selenium dependent enzyme.
- It promotes digestion, absorption of lipids and vitamin E.
- It is a part of glutathione peroxidase, prevents peroxidation of PUFA in the membranes.
- It helps in the retention of vitamin E in the blood.
- It is a cofactor for an enzyme involved in the synthesis of thyroid hormone.

- Deficiency of selenium:
- Liver cirrhosis
- Pancreatic degeneration
- Myopathy, infertility
- Failure of growth

• Toxicity:

- - Selenium toxicity is called Selenosis
- - Toxic dose is 900micro gram/day
- It is present in metal polishes and anti-rust compounds