www.FirstRanker.com www.FirstRanker.com

- Building blocks of proteins
- More then 300 AA have been described
- Only 20 AA are found in mammalian tissue
- > These 20 AA are called primary or standard AA

Each AA contain a amino group (NH2), carboxyl group (COOH) and a distinct side chain exception to this rule is Proline which contains Imino group (NH) instead of amino group

- > Phenylalanine
- > Tryptophan
- Valine
- > Threonine
- Leucine
- > Isoleucine
- Methionine
- > Serine

- > Histidine
- > Arginine
- > Lysine
- > Leucine
- > Alanine
- > Cysteine
- > Glutamic acid
- > Aspartic acid

These Amino acids do not take part in the protein synthesis but play important role in the body.

Citrulline
Ornithine
Taurine
DOPA
GABA

<u>Classification of Standard</u> <u>Amino Acids</u>

- > Amino acids with Aromatic side chain
- > Amino acids with aliphatic side chain
- > Amino acids with side chain containing Sulphur atom
- > Amino acids with Acidic side chains
- > Amino acids with Basic side chains
- Amino acids with side chain having OH group
 Imino Acid

www.FirstRanker.com

Amino acids with Acidic Side Chains

- > These are mono amino dicarboxylic
- > Aspartic acid
- > Glutamic acid

www.FirstRanker.com

Amino acids with Basic Side Chains

> These are diamino monocarboxylic

- > Arginine
- > Histidine
- > Lysine

www.FirstRanker.com

Amino Acids with Aliphatic Side Chain

- Glycine
- Alanine
- Valine
- Leucine
- Isoleucine

www.FirstRanker.com

Amino Acids with Side Chain Having OH Group

- Serine
- Threonine

www.FirstRanker.com

Amino Acids with Side Chain Containing Sulphur Atom

Cysteine
Cystine
Methionine

www.FirstRanker.com

Amino Acids with Aromatic Side Chain

- > Phenylalanine
- > Tyrosine
- > Tryptophan

Classification of Proteins

- Simple Protein
- > Albumin
- Globulin
- > Prolamin
- > Histone
- > Protamine

<u>Albumins</u>

> These are water – soluble proteins
> Occur in both plant and animal kingdoms.
> Coagulated by heat
> Examples:

Serum albumin
Ovalbumin
Lactalbumin

<u>Globulins</u>

> Insoluble in water
> They are found in animals
> E.g.

- Lacto globulin
- Serum globulins
- Legumin

<u>Globulins</u>

- Globulins are more easily precipitated than albumins and this can be done by only half- saturation with ammonium sulfate.
- Thus half-saturation with ammonium sulfate can be used to separate globulins from albumin; this process is called salting out.

- These are rich in histidine but are not basic.
- They unite with heme to form hemoglobin
 Hemoglobin of different species differs only with respect to goblin, but the heme part is the same in all cases.

Prolamins

- These are soluble in 70 to 80% ethanol but insoluble in water and absolute alcohol
- Examples are gliadin of wheat and zein of maize.
- These are rich in the amino acid praline but deficient in lysine.

<u>Histones</u>

 These are very strongly basic proteins
 They are rich in arginine
 In combination with deoxyribonucleic acid (DNA) they form Nucleoproteins or Nucleohistones which occur in nuclei forming chromatin material

Histones

The association of DNA and Histone gives rise to complex called nucleosomes, 10nm in diameter, in which DNA strands wind around a core of Histone molecules.

- Histones are soluble in water but not in ammonium hydroxide.
- These proteins contain little or no tryptophan

Protamines

- These are present in sperm cells
- They are of relatively smaller size
- They are basic protein and resemble but unlike them are
- Soluble in ammonium hydroxide
- Like Histone they form nucleoproteins with nucleic acids and are rich in arginine. These proteins lack in both tyrosine and tryptophan

Functions of Proteins

Catalytic Proteins, e.g. Enzymes

Regulatory Proteins

Structural Proteins, e.g. hairs, Nail etc

> Transport Proteins, e.g. Albumin

Functions of Proteins

Defensive Proteins, e.g. Immunoglobulin

Contractile Proteins, e.g. Actin, Myosin

Genetic Proteins, e.g. Nucleoproteins

Storage Proteins

www.FirstRanker.com

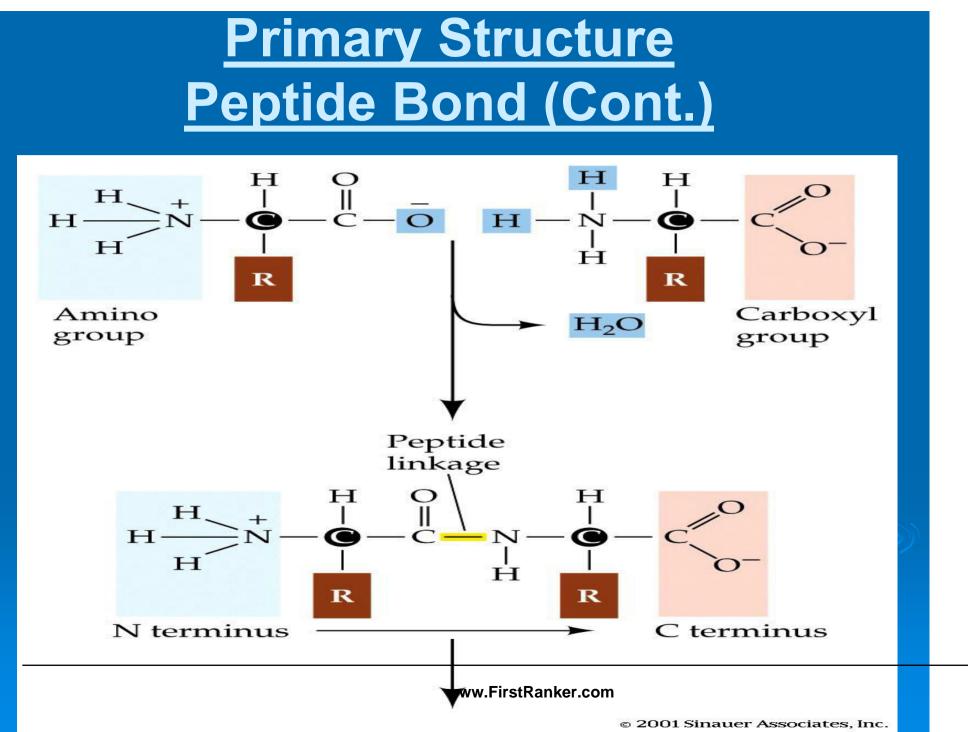
Derived Proteins

Primary derived proteins (denatured proteins)

Secondary derived proteins (hydrolytic proteins)

www.FirstRanker.com

Primary Structure


□ The sequence of amino acids in a protein.

□ Peptide bond

Peptide bond

- > Amide linkage between the α-carboxyl group of one AA & the α-amino group of another.
- > It is a very stable bond.

Not broken by conditions that denature proteins such as heating or high concentration of urea.

Peptide bond (Cont.)

- Non enzymatically hydrolyzed by prolong exposure to strong acid or base at elevated temperature.
- All AA sequences read from amino terminal to carboxyl terminal of the peptide bond.

- Peptide bond (Cont.)
- Polypeptide chain
- Linkage of many AA through peptide bond results in un branched chain.
- Each AA in a polypeptide chain is called as a residue or moiety.

Peptide bond (Cont.)
Trans-configuration
Uncharged but polar
Partial double bond
Lack of rotation around the bond

Peptide bond (Cont.)Trans-configuration

□ Peptide bond (Cont.)

- Uncharged but polar
- > C=O & NH groups of the peptide bond neither accept nor give proton over the pH range of 2 to 12
- So charge is present only on N-terminal amino group and carboxyl group on C-terminal & any ionized group present in R.

- □ Peptide bond (Cont.)
- Partial double bond
- > Because it is shorter in length then single bond.

□ Peptide bond (Cont.)

- > Lack of rotation around the bond.
- This is a rigid bond prevents ant rotation around carbonyl carbon and the nitrogen of the bond.

Alpha Helix
Beta sheets
Beta bends (reverse turns)
Non-repetitive secondary structure
Super-secondary structures (Motifs)

□ Alpha Helix

- A spiral structure
- Consist of coiled polypeptide chain back bone core with the side chains extending outward from the central helix.
- E.g. keratin

□ Alpha Helix

- > Hydrogen bond
- > Between carbonyl oxygen & amide hydrogen's .
- Function of Hydrogen bond.
- Individual Hydrogen bond is weak but collectively serve to stabilize the helix.

□ Alpha Helix

- > AA per turn 3.6 AA.
- > AA that disrupts the Alpha Helix
- > Proline (Imino gp)
- Glutamate, Aspartate, Histidine, Lysine, arginine (charged)
- > Tryptophan (bulky side chain)
- Valine, Isoleucine (branch at beta carbon)

Beta sheets

- Contain 2 or more peptide chains or segments of polypeptide chains that are fully extended.
- There may be a single polypeptide chain which is folding on itself.
- > Arrangement of the polypeptide chains may be parallel of anti-parallel.

□ Beta sheets (Cont.)

- > All peptide bond components are involved in the hydrogen bonding.
- > Hydrogen bonds are perpendicular to the polypeptide back bone core.
- > Hydrogen bond may be inter-chain or intra chain.

□ Beta bends (reverse turns)

- Generally composed of 4 AA
- Mostly contain Proline & Glycine
- Stabilized by the Hydrogen & ionic bonding.
- Connect the successive strands of anti parallel Beta sheets

www.FirstRanker.com

www.FirstRanker.com

Non-repetitive secondary structure Less regular structure usually in the shape of a coil.

 Super-secondary structures (Motifs)
 Produced by packing side chains from adjacent secondary elements close to each other.

<u>Motifs</u>

 Proteins that binds to DNA contains one or more of a limited number of motifs.
 The zinc motif is common, found in number of proteins that functions as transcription factor.

<u>Domains</u>

- Fundamental functional & three dimensional structural units of polypeptides.
- Those polypeptide chains which contains more then 200 AA in length generally consists of 2 or more Domains.
- Folding of peptide chain within a Domain is independent of folding in other Domains.

- The structure of a globular protein in the aqueous environment is compact.
- > High density atoms in the core of the molecule.
- > Hydrophobic side chains are buried in the interior.
- > Hydrophilic groups are usually present on the exterior or surface.

- Stabilized by:
- > Hydrophobic interactions
- > Hydrogen bonds
- > Electrostatic interactions
- > Disulfide bonds

- > Hydrophobic interactions
- If the protein molecules is present in the aqueous environment.
- > AA with the Hydrophobic side chains are buried in the interior.
- > AA with the Hydrophilic groups are usually present on the exterior or surface.

> Disulfide bonds

- A covalent linkage formed from the sulphydryl group (- SH) of each of the 2 cysteine residues.
- Immunoglobulins contains many Disulfide bonds.

- > Hydrogen bond:
- AA side chain having O2 or N-bound H2 (alcohol group of serine & Threonine) can form H-bond with electron rich atoms (O2 of a carboxyl group)

Ionic interactions:

Negatively charged groups, such as the carboxyl group (-COO-) in the side chain of aspartate or glutamate can interact with the + charged groups such as Amino groups (-NH₃+) in the side chain of lysine.

Protein Folding

- Information needed for the folding is located in primary structure of polypeptide.
- Folding begin along with the synthesis instead of waiting for synthesis of entire chain to be completed.
- Factors which contribute to the folding include,

Protein Folding (Cont.)

- Charge on the side chains of AA.
- > Hydrophobic interactions
- > Hydrogen bonds
- > Electrostatic interactions
- > Disulfide bonds
- > Chaperones

Protein Folding (Cont.)

- > Chaperones:
- > Also known as Heat shock proteins.
- > Assist folding
- > Protect
- Some times keep protein unfolded until synthesis is complete.

Quaternary Structure

Stabilized by:

- > Hydrophobic interactions
- > Hydrogen bonds
- > Electrostatic interactions

Denaturation

Loss of secondary and tertiary structure.

- This lead to loss of function.
- Denaturant include,
- > Urea, extremes of pH, organic solvents.

Denaturation (Cont.)

- 2 types of Denaturation.
 > Reversible Denaturation
 > Irreversible Denaturation
 > Some proteins can refold upon removal of denaturant.
 > Other can't refold upon the removal of
 - denaturant.