

SCREENING FOR DISE

FirstR

SCREENING TEST RESULT BY DIA

Screening test	Diagnosis	
results	Diseased	Not Diseased
Positive	a (True positive)	b (False positive)
Negative	c (False negative)	d (True negative)
Total	a + c	b + d

- a- those with positive test result, and who have the disease
- b- those with positive test result, but who do not have the di
- c- those with negative test results, but who have the disease
- d- those with negative results who do not have the disease

(a) Sensitivity

EVALUATION OF A SCREENING TE

The following measures are used to evaluate a

(4)	Scristeritey	ω, (
(b)	Specificity	= d / (l
(c)	Predictive value of a positive test	= a / (a
(d)	Predictive value of a negative test	= d / (
(e)	Percentage of false negatives	= c / (
(f)	Percentage of false positive	= b / (

SCREENING TEST RESULT BY DIA

Screening test results	Diagnosis		
results	Diseased	Not Diseased	
Positive	40 (a)	20 (b)	
Negative	100 (c)	9840 (d)	
Total	140 (a + c)	9860 (b + d)	

EVALUATION OF A SCREENING TE

(a)	Sensitivity	= (40 / 140) x 100	=
	(true positive)		
(b)	Specificity	= (9840 / 9860) x 100	=
	(true negative)		
(c)	False negative	= (100/140) x 100	=
(d)	False positive	$= (20/9860) \times 100$	=
(e)	Predictive value	$= (40/60) \times 100$	=
	of a positive test		

(f) Predictive value = $(9840/9940) \times 100$

of a negative test anker.com

SENSITIVITY

- This term was introduced by Yarushalmy in 1940 index of diagnostic accuracy.
- Definition: Ability of a test to identify correctly have the disease, that is "true positive".
- A 90 percent sensitivity means that 90 percent of people screened by the test will give a "true pot the remaining 10 percent will give a "false negot

SPECIFICITY

- Definition: The ability of a test to identify corre not have a disease that is the "true negative".
- A 90 percent specificity means that the 90 percent diseased persons will give a true negative result non-diseases people screened by the test will be classified as "diseased" when they are not.

Over Lapping of distribution

- In diagnostic tests that yield a quantitative ressure sugar and blood pressure) the situation is different
- There will be overlapping of the distribution of diseased and non diseased persons.
- False positive and false negative comprises the
- When there is distribution overlap it is not poss assign the individuals with these values to eithe diseases group on the basis of screening alone.

Diagnosis of brain tumours by El

EEG results	Brain tumour	
	Present	
Positive	36	
Negative	4	
Total	40	

- (a) Sensitivity = $36 / 40 \times 100 = 90\%$
- (b) Specificity = $306,000 / 360,000 \times 100 = 85$

Diagnosis of brain tumours by Coassisted axial tomography

CAT results	Brain tumour	
	Present	
Positive	39	
Negative	1	
Total	40	

- (a) Sensitivity = $39 / 40 \times 100 = 97.5\%$
- (b) Specificity = $342,000 / 360,000 \times 100 = 95$

PREDICTIVE ACCURACY

- In addition to sensitivity and specificity, the per screening test is measured by its "Predictive vareflects the diagnostic power of the test.
- Depends on:
- a. Sensitivity
- b. Specificity
- c. Disease prevalence

PREDICTIVE ACCURACY

- The "Predictive value of a positive test" indicated probability that a patient with a positive test retained the disease in question.
- The more prevalent a disease is in a given population accurate will be the predictive value of a positive
- The predictive value of a positive results falls as prevalence declines.

FALSE NEGATIVES AND POSITIVE

- FALSE NEGATIVES: Means that patients who act disease are told that they do not have the disea them a "false reassurance"
- These patients with "false negative" test result development of signs and symptoms and may potential.
- A screening test which is very sensitive has few
- The lower the sensitivity, the larger will be the negatives.

- FALSE POSITIVES: "False positives" means that
 do not have the disease are told that they have
- In this case, normal healthy people may be subj diagnostic tests, at some inconvenience - until t disease is established.
- A screening test with a high specificity will have
- False positives not only burden the diagnostic fa also bring discredit to screening programs.

YIELD

- Yield: It is the amount of previously unrecognized diagnosed as a result of the screening effort.
- Depends on:
- a. Sensitivity
- b. Specificity
- c. Prevalence of disease
- d. Participation of the individual
- Example: By limiting a diabetes screening progr 40 years, we can increase the yield of screening
- High risk populations are usually selected for so increasing yield.

COMBINATION OF TESTS

- Two or more tests can be combined to enhance sensitivity of screening.
- Example: Syphilis screening affords an example screeners are first evaluated by an RPR test.
- This test has high sensitivity, yet will yield false
- However all those positives to RPR are then sub which is a more specific test, and the resultant have syphilis.

a. Bimodal Distribution in a popu

PROBLEM OF BORDERLINE

- Figure a: Is a bimodal distribution of a variable and "diseased population". Note that the two
- If the disease is bimodal, as may be expected in genetically transmitted characteristics, the shad "border-line" group will comprise a mixture of disease and persons without the disease (i.e mix positive and false negatives).
- The point at which the distribution intersect (intersect) frequently used as the cut-off point between the "diseased" persons, because it will generally make positives and false negatives.

b. Unimodal Distribution in a pop

- Figure b: Is a Unimodal distribution. Many varia pressure, blood sugar, show this type of distribuare continuously distributed around the mean, on normal or skewed distribution.
- In these observations, there is no sharp dividing "normal" and "diseased".
- The "borderline" groups, (C-D) will comprise a sample of persons. The question arises whether between the disease and normality should be s

- If the cut- off point is set at a level of A or C, it test highly sensitive, missing few cases but yield positives.
- If the cut-off point is set at B or D, it will increate the test.
- Furthermore in the unimodal distribution, once has been adopted, all persons above the level (would be regarded a "diseased".

Example: Diabetes

- If the cut-off point for blood glucose is lowered (say less than 120 mg per cent), the sensitivity increased at the cost of specificity.
- If the cut-off point is raised (say to 180 mg per sensitivity is decreased.
- In other words no blood sugar level which will e separation of all those with the disease from the disease.

PROBLEM OF BORDERLINE

- In Screening a prior decision is made about the the basis of which individuals are classified as "diseased"
- Factors:
- a. Disease Prevalence: When prevalence is high screening level is set at a low level which will sensitivity.
- The Disease: If the disease is very lethal (Cerearly detection improves prognosis, a greater sensitivity, even at the expense of specificity,

POINTS TO BE TAKEN IN CONSIDE

- 1. People who participate in the screening prograthuse those who have most to gain from it. Example
- Test with greater accuracy may be more expension consuming, and the choice of the test therefore on compromise
- 3. Screening should not be developed in isolation integrated into the existing health services.
- The risks as well as the expected benefits must the people to be screened. Risk include compl possibility of false positive and false negative.

SOME SCREENING TESTS

Pregnancy

			•
Λ	2	\sim	10
	na		
			. •

Hypertension Toxemia

Rh status

Syphilis (VDRL Test)

Diabetes

Cardiovascular disease

Neural tube defects

Down's syndrome

HIV

Middle-aged

Hypertension

Cancer

Diabetes mellitus

Serum cholesterol

Obesity

Hypertension

SOME SCREENING TESTS

Infancy

LCB
Congenital dislocation of hip
Congenital heart disease
Spina bifida
Cerebral palsy
Hearing defects

Visual defects
Hypothyroidism
Developmental
Haemoglobinop
Sickle cell anae
Undescended to

EVALUATION OF SCREENING PRO

- 1. Randomized control Trials: In this one group screening test, and a control which receives no
- Example: Cancers. If the disease has a low freq population, and a long incubation period RCT m following tens of thousands of people for 10-20 perfect record keeping.

EVALUATION OF SCREENING PRO

- 2. Uncontrolled Trials: These are used to see if disease detected through screening appear to lidiagnosis and treatment than patients who were
- Example: Uncontrolled study of Cervical cancer indicated that deaths from that disease could be reduced if every women was examined periodical

EVALUATION OF SCREENING PRO

- 3.Other Methods: Methods like Case Control stuced comparison in trends between areas with different screening coverage.
- It can be determined whether intervention by so better than the conventional method of managinal

FirstRanker.com

THANKS