Do not open this Test Booklet until you are asked to do so.

Important Instructions:

1. The Answer Sheet is inside this Test Booklet. When you are directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on side-1 and side-2 carefully with blue/black ball point pen only.
2. The test is of $\mathbf{3}$ hours duration and Test Booklet contains 180 questions. Each question carries $\mathbf{4}$ marks. For each correct response, the candidate will get 4 marks. For each incorrect response, one mark will be deducted from the total scores. The maximum marks are 720.
3. Use Blue/Black Ball Point Pen only for writing particulars on this page/marking responses.
4. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
5. On completion of the test, the candidate must hand over the Answer Sheet to the invigilator before leaving the Room/Hall. The candidates are allowed to take away this Test Booklet with them.
6. The CODE for this Booklet is \mathbf{W}. Make sure that the CODE printed on Side-2 of the Answer Sheet is the same as that on this Booklet. In case of discrepancy, the candidate should immediately report the matter to the Invigilator for replacement of both the Test Booklet and the Answer Sheet.
7. The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet/ Answer Sheet.
8. Use of white fluid for correction is NOT permissible on the Answer Sheet.
9. Each candidate must show on demand his/her Admit Card to the Invigilator.
10. No candidate, without special permission of the Superintendent or Invigilator, would leave his/her seat.
11. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. Cases where a candidate has not signed the Attendance Sheet second time will be deemed not to have handed over Answer Sheet and dealt with as an unfair means case.
12. Use of Electronic/Manual Calculator is prohibited.
13. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.
14. No part of the Test Booklet and Answer Sheet shall be detached under any circumstances.
15. The candidates will write the Correct Test Booklet Code as given in the Test Booklet/Answer Sheet in the Attendance Sheet.
16. Which one of the following statements is correct, with reference to enzymes?
(1) Apoenzyme $=$ Holoenzyme + Coenzyme
(2) Holoenzyme $=$ Apoenzyme + Coenzyme
(3) Coenzyme $=$ Apoenzyme + Holoenzyme
(4) Holoenzyme $=$ Coenzyme + Co-factor
17. Which cells of 'Crypts of Lieberkuhn' secrete antibacterial lysozyne?
(1) Argentaffin cells
(2) Ралеth cells
(3) Zymogen cells
(4) Kupffer cells
18. Phosphoenol pyruvate (PEP) is the primary CO_{2} acceptor in:
(1) C_{3} plants
(2) C_{4} plants
(3) C_{2} plants
(4) C_{3} and C_{4} plants
19. Match the following sexually transmitted diseases (Column - I) with their causative agent (Column - II) and select the correct option

Column - 1

(a) Gonorrhea
(b) Syphilis

(c)
(d)

(iii) Treponema

Human Papilloma - Virus

Options:

	(a)	(b)	(c)	(d)
(1)	(ii)	(iii)	(iv)	(i)
(2)	(iii)	(iv)	(i)	(ii)
(3)	(iv)	(ii)	(iii)	(i)
(4)	(iv)	(iii)	(ii)	(i)

5. Which among the following are the smallest living cells, known without a definite cell wall, pathogenic to plants as well as animals and can survive without oxygen?
(1) Bacillus
(2) Pseudomonas
(3) Mycoplasma
6. Which one from those given below is the period for Mendel's hybridization experiments?
(7) 1856-1863
(2) 1840-1850
(3) 1857-1869
(4) $1870-1877$

Flowers which have single ovule in the ovary and are packed into inflorescence are usually pollinated by:
(1) Water
(2) Bee
(3) Wind
(4) Bat
8. Asymptote in a logistic growth curve is obtained when :
(1) The value of ' r ' approaches zero
(2) $\mathrm{K}=\mathrm{N}$
(3) $\mathrm{K}>\mathrm{N}$
(4) $\mathrm{K}<\mathrm{N}$
9. Out of ' X ' pairs of ribs in humans only ' Y ' pairs are true ribs. Select the option that correctly represents values of X and Y and provides their explanation:
(1) $X=12, Y=7 \quad$ True ribs are attached dorsally to vertebral column and ventrally to the sternum.
(2) $\mathrm{X}=12, \mathrm{Y}=5$ True ribs are attached dorsally to vertebral column and sternum on the two ends.
(3) $\mathrm{X}=24, \mathrm{Y}=7$ True ribs are dorsally attached to vertebral column but are free on ventral side.
(4) $X=24, Y=12$ True ribs are dorsally attached to vertebral column but are free on ventral side.
10. MALT constitutes about \qquad percent of the lymphoid tissue in human body.
(1) 50%
(2) 20%
(3) 70%
(4) 10%
11. Homozygous purelines in cattle can be obtained by:
(1) mating of related individuals of same breed.
(2) mating of unrelated individuals of same breed.
(3) mating of individuals of different breed.
(4) mating of individuals of different species.
12. Among the following characters, which one was not considered by Mendel in his experiments on pea?
(1) Stem - Tall or Dwarf
(2) Trichomes - Glandular or non-glandular
(3) Seed - Green or Yellow
(4) Pod - Inflated or Constricted
13. Which of the following cell organelles is responsible for extracting energy from carbohydrates to form ATP?
(1) Lysosome
(2) Ribosome
(3) Chloroplast
(4) Mitochondrion
14. If there are 999 bases in an RNA that codes for a protein with 333 amino acids, and the base at position 901 is deleted such that the length of the RNA becomes 998 bases, how many codons will be altered ?
(1) 1
(2) 11
(3) 33
(4) 333
15. Which of the following are found in extreme saline conditions?
(1) Archaebacteria
(2) Eubacteria
(3) Cyanobacteria
(4) Mycobacteria
16. Receptor sites for neurotransmitters are present on
(1) membranes of synaptic vesicles
(2) pre-synaptic membrane
(3) tips of axons
17. Artificial selection to obtain cows yielding higher milk output represents :
(1) stabilizing selection as it stabilizes this character in the population.
(2) directional as it pushes the mean of the character in one direction.
(3) disruptive as it splits the population into two, one yielding higher output and the other lower output.
stabilizing followed by disruptive as it stabilizes the population to produce higher yielding cows.

The hepatic portal vein drains blood to liver from :

(2) Stomach

(4) Intestine
19. The water potential of pure water is :

(1) Zero

(2) Less than zero
(3) More than zero but less than one
(4) More than one
20. Which of the following represents order of 'Horse'?
(2) Perissodactyla
(3) Caballus

4 Ferns
21. Alexander Von Humbolt described for the first time:
(1) Ecological Biodiversity
(2) Laws of limiting factor
(3) Species area relationships
(4) Population Growth equation
22. DNA fragments are:
(1) Positively charged
(2) Negatively charged
(3) Neutral
(4) Either positively or negatively charged depending on their size
23. A baby boy aged two years is admitted to play school and passes through a dental check - up. The dentist observed that the boy had twenty teeth. Which teeth were absent?
(1) Incisors
(2) Canines
(3) Pre-molars
(4) Molars
24. Anaphase Promoting Complex (APC) is a protein degradation machinery necessary for proper mitosis of animal cells. If APC is defective in a human cell, which of the following is expected to occur?
(1) Chromosomes will not condense
(2) Chromosomes will be fragmented
(3) Chromosomes will not segregate
(4) Recombination of chromosome arms will occur
25. An important characteristic that Hemichordates share with Chordates is :
(1) absence of notochord
(2) ventral tubular nerve cord
(3) pharynx with gill slits
(4) pharynx without gill slits
26. The genotypes of a Husband and Wife are $I^{A} I^{B}$ and $I^{A}{ }_{i}$.

Among the blood types of their children, how many different genotypes and phenotypes are possible?
(1) 3 genotypes; 3 phenotypes
(2) 3 genotypes; 4 phenotypes
(3) 4 genotypes; 3 phenotypes
(4) 4 genotypes; 4 phenotypes

Transplantation of tissues/organs fails often due to non-acceptance by the patient's body. Which type of immune-response is responsible for such rejections?
(1) Autoimmune response
(2) Cell-mediated immune response
(3) Hormonal immune response
(4) Physiological immune response
28. Adult human RBCs are enucleate. Which of the following statement(s) is/are most appropriate explanation for this feature?
(a) They do not need to reproduce
(b) They are somatic cells
(c) They do not metabolize
(d) All their internal space is available for oxygen transport

Options:

(2) Only (a)
(3) (a), (c) and (d)
(4) (b) and (c)
29. Lungs are made up of air-filled sacs, the alveoli. They do not collapse even after forceful expiration, because of :
(1) Residual Volume
(2) Inspiratory Reserve Volume
(3) Tidal Volume
(4) Expiratory Reserve Volume
30. Zygotic meiosis is characteristic of :
(1) Marchantia
(2) Fucus
(3) Funaria
(4) Chlamydomonas
31. Select the correct route for the passage of sperms in male frogs :
(1) Testes \rightarrow Bidder's canal \rightarrow Kidney \rightarrow Vasa efferentia \rightarrow Urinogenital duct \rightarrow Cloaca
(2) Testes \rightarrow Vasa efferentia \rightarrow Kidney \rightarrow Seminal Vesicle \rightarrow Urinogenital duct \rightarrow Cloaca
(3) Testes \rightarrow Va'sa efferentia \rightarrow Bidder's canal \rightarrow Ureter \rightarrow Cloaca
(4) Testes \rightarrow Vasa efferentia \rightarrow Kidney \rightarrow Bidder's canal \rightarrow Urinogenital duct \rightarrow Cloaca
32. Which one of the following statements is not valid for aerosols?
(1) They are harmful to human health
(2) They alter rainfall and monsoon patterns
(3) They cause increased agricultural productivity .
(4) They have negative impact on agricultural land
33. Viroids differ from viruses in having :
(1) DNA molecules with protein coat
(2) DNA molecules without protein coat
(3) RNA molecules with protein coat
(4) RNA molecules without protein coat

During DNA replication, Okazaki fragments are used to elongate :
(1) The leading strand towards replication fork.
(2) The lagging strand towards replication fork.
(3) The leading strand away from replication fork.
(4) The lagging strand away from the replication fork.
(35.) Plants which produce characteristic pneumatophores and show vivipary belong to:
(1) Mesophytes
(2) Halophytes
(3) Psammophytes
(4) Hydrophytes
36. The process of separation and purification of expressed protein before marketing is called :
(1) Upstream processing
(2) Downstream processing
(3) Bioprocessing
(4) Postproduction processing
37. Identify the wrong statement in context of heartwood:
(1) Organic compounds are deposited in it
(2) It is highly durable
(3) It conducts water and minerals efficiently
(4) It comprises dead elements with highly lignified walls

Spliceosomes are not found in cells of :
(1) Plants
(2) Fungi
(3) Animals
(4) Bacteria
39. Which of the following statements is correct?
(1) The ascending limb of loop of Henle is impermeable to water.
(2) The descending limb of loop of Henle is impermeable to water.
(3) The ascending limb of loop of Henle is permeable to water.
(4) The descending limb of loop of Henle is permeable to electrolytes.
40. Which ecosystem has the maximum biomass ?
(1) Forest ecosystem
(2) Grassland ecosystem
(3) Pond ecosystem
(4) Lake ecosystem
41. The final proof for DNA as the genetic material came from the experiments of :
(1) Griffith
(2) Hershey and Chase
(3) Avery, Mcleod and McCarty
(4) Hargobind Khorana
42. The function of copper ions in copper releasing IUD's is :They suppress sperm motility and fertilising capacity of sperms.
(2) They inhibit gametogenesis.
(3) They make uterus unsuitable for implantation.
(4) They inhibit ovulation.
43. An example of colonial alga is :
(3) Ulothrix
(4) Spirogyra

W
44. Root hairs develop from the region of :
(1) Maturation
(2) Elongation
(3) Rootcap
(4) Meristematic activity
45. Hypersecretion of Growth Hormone in adults does not cause further increase in height, because :
(1) Growth Hormone becomes inactive in adults. (2) Epiphyseal plates close after adolescence.
(3) Bones loose their sensitivity to Growth Hormone in adults.
(4) Muscle fibres do not grow in size after birth.
46. Which of the following in sewage treatment removes suspended solids?
(1) Tertiary treatment
(2) Secondary treatment
(3) Primary treatment
(4) Sludge treatment
47. Select the mismatch:

(1) Pinus	-	Dioecious
(2) Cycas	-	Dioecious
(3) Salvinia	-	Heterosporous
(4) Equisetum	-	Homosporous

48. What is the criterion for DNA fragments movement on agarose gel during gel electrophoresis ?
(1) The larger the fragment size, the farther it moves
(2) The smaller the fragment size, the farther it moves
(3) Positively charged fragments move to farther end
(4) Negatively charged fragments do not move
49. In Bougainvillea thorns are the modifications of :
(1) Stipules
(2) Adventilious root

[^0]50. The association of histone H 1 with a nucleosome indicates:
(1) Transcription is occurring.
(2) DNA replication is occurring.
(3) The DNA is condensed into a Chromatin Fibre.
(4) The DNA double helix is exposed.
51. A temporary endocrine gland in the human body 15 :
(1) Pineal gland
(2) Corpus cardiacum
(3) Corpus luteum
(4) Corpus allatum
52. Select the mismatch :
(1) Frankia - Alnus
(2) Rhodospirillum - Mycorrhiza
(3) Anabaena - Nitrogen fixer
(4) Rhizobium $~$ Alfalfa
53. GnRH, a hypothalamic hormone, needed in reproduction, acts on :
(1)
anterior pituitary gland and stimulates secretion of LH and oxytocin.
(2) anterior pituitary gland and stimulates secretion of LH and FSH.
(3) posterior pituitary gland and stimulates secretion of oxytocin and FSH.
(4) posterior pituitary gland and stimulates secretion of LH and relaxin.
54. A gene whose expression helps to identify transformed cell is known as :
(1) Selectable marker
(2) Vector
(3) Plasmid
(4) Structural gene
55. Presence of plants arranged into well defined vertical layers depending on their height can be seen best in:
(1) Tropical Savannah
(2) Tropical Rain Forest
(3) Grassland

Temperate Forest
56. Functional megaspore in an angiosperm develops into:
(1) Ovule
(2) Endosperm
(3) Embryo sac
(4) Embryo
57. DNA replication in bacteria occurs :
(1) During S phase
(2) Within nucleolus
(3) Prior to fission
(4) Just before transcription
58. Which among these is the correct combination of aquatic mammals ?
(1) Seals, Dolphins, Sharks
(2) Dolphins, Seals, Trygon
(3) Whales, Dolphins, Seals
(4) Trygon, Whales, Seals
59. Coconut fruit is a

(2) Berry
(3) Nut
(4) Capsule
60. Double fertilization is exhibited by :
(1) Gymnosperms
(2) Algae
(3) Fungi
(4) Angiosperms
61. Which of the following components provides sticky character to the bacterial cell?
(1) Cell wall

Nuclear membrane
Plasma membrane

Life cycle of Ectocarpus and Fucus respectively are:
(1) Haplontic, Diplontic
(2) Diplontic, Haplodiplontic
(3) Haplodiplontic, Diplontic
(4) Haplodiplontic, Haplontic
63. Which one of the following is related to Ex-situ conservation of threatened animals and plants?
(1) Wildlife Safari parks
(2) Biodiversity hot spots
(3) Amazon rainforest
(4) Himalayan region
64. Good vision depends on adequate intake of carotenerich food.

Select the best option from the following statements.
(a) Vitamin A derivatives are formed from carotene.
(b) The photopigments are embedded in the membrane discs of the inner segment.

Retinal is a derivative of Vitamin A.
(d) Retinal is a light absorbing part of all the visual photopigments.

Options:

(1) (a) and (b)
(2) (a), (c) and (d)
(3) (a) and (c)
(4) (b), (c) and (d)
65. Thalassemia and sickle cell anemia are caused due to a problem in globin molecule synthesis. Select the correct statement.
(1) Both are due to a qualitative defect in globin chain synthesis.
(2) Both are due to a quantitative defect in globin chain synthesis.

Thalassemia is due to less synthesis of globin molecules.
(4) Sickle cell anemia is due to a quantitative problem of globin molecules.

Which of the following are not polymeric ?
(1) Nucleic acids
(2) Proteins
(3) Polysaccharides
(4) Lipids
67. A disease caused by an autosomal primary non-disjunction is :
(1) Down's Syndrome

K Klinefelter's Syndrome
(3) Turner's Syndrome
(4) Sickle Cell Anemia
68. With reference to factors affecting the rate of photosynthesis, which of the following statements is not correct?
(1) Light saturation for CO_{2} fixation occurs at 10% of full sunlight
(2) Increasing atmospheric CO_{2} concentration up to 0.05% can enhance CO_{2} fixation rate
(3) C_{3} plants respond to higher temperatures with enhanced photosynthesis while C_{4} plants have much lower temperature optimum
(4)

Tomato is a greenhouse crop which can be grown in CO_{2} - enriched atmosphere for higher yield
69. Fruit and leaf drop at early stages can be prevented by the application of:
(1) Cytokinins
(2) Ethylene
(d) Auxins
(4) Gibberellic acid
70. The region of Biosphere Reserve which is legally protected and where no human activity is allowed is known as :
(1) Core zone
(2) Buffer zone
(3) Transition zone
(4) Restoration zone
71. In case of poriferans, the spongocoel is lined with flagellated cells called :

(2) oscula
(3) choanocytes
(4) mesenchymal cells
72. A decrease in blood pressure/ volume will not cause the release of :
(1) Renin
(2) Atrial Natriuretic Factor
(3) Aldosterone
(4) ADH

73. A dioecious flowering plant prevents both

(1) Autogamy and xenogamy
(2) Autogamy and geitonogamy
(3) Geitonogamy and xenogamy
(4) Cleistogamy and xenogamy
74. Which of the following facilitates opening of stomatal aperture?
(1) Contraction of outer wall of guard cells
(2) Decrease in turgidity of guard cells

Radial orientation of cellulose microfibrils in the cell wall of guard cells
(4) Longitudinal orientation of cellulose microfibrils in the cell wall of guard cells
75. The DNA fragments separated on an agarose gel can be visualised after staining with :
(1) Bromophenol blue
(2) Acetocarmine
(3) Aniline blue
76. Which statement is wrong for Krebs' cycle?
(1) There are three points in the cycle where NAD^{+}is reduced to $\mathrm{NADH}+\mathrm{H}^{+}$
(2) There is one point in the cycle where FAD^{+} is reduced to FADH_{2}
(3) During conversion of succinyl CoA to succinic acid, a molecule of GTP is synthesised
44 The cycle starts with condensation of acetyl group (acetyl CoA) with pyruvic acid to yield citric acid
77. Mycorrhizae are the example of :
(1) Fungistasis
(2) Amensalism
(3) Antibiosis
(4) Mutualism
78. The pivot joint between atlas and axis is a type of :
(1) fibrous joint
(2) cartilaginous joint
(3) synovial joint
(4) saddle joint
79. Which of the following is correctly matched for the product produced by them?
(1) Acetobacter aceti : Antibiotics
(2) Methanobacterium : Lactic acid
(3) Penicillium notatum: Acetic acid
(4) Sacchromyces cerevisiae : Ethanol
80. Frog's heart when taken out of the body continues to beat for sometime.

Select the best option from the following statements.
(a) Frog is a poikilotherm.
(b) Frog does not have any coronary circulation.
(c) Heart is "myogenic" in nature.
(d) Heart is autoexcitable.

Options:
(1) Only (c)
(2) Only (d)
(3)
(a) and (b)
81. Myelin sheath is produced by :
(1) Schwann Cells and Oligodendrocytes
(2) Astrocytes and Schwann Cells
(3) Oligodendrocytes and Osteoclasts
(4) Osteoclasts and Astrocytes
82. Capacitation occurs in :
(1) Rete testis
(2) Epididymis
(3) Vas deferens
(4) Female Reproductive tract
83. The morphological nature of the edible part of coconut is :
(1) Perisperm
(2) Cotyledon
(3) Endosperm
(4) Pericarp
84. Which of the following is made up of dead cells?
(1) Xylem parenchyma
(2) Collenchyma
(3) Phellem
(4) Phloem
85. In case of a couple where the male is having a very low sperm count, which technique will be suitable for fertilisation?
(1) Intrauterine transfer
(2) Gamete intracytoplasmic fallopian transfer

(3) Artificial Insemination

(4) Intracytoplasmic sperm injection
86. Which of the following RNAs should be most abundant in animal cell?
(1) r-RNA
(2) t-RNA
(3) m-RNA
(4) mi-RNA
87. The vascular cambium normally gives rise to:
(1) Phelloderm
(2) Primary phloem
(3) Secondary xylem
(4) Periderm
(4) (c) and (d)
88. Which of the following options gives the correct sequence of events during mitosis ?
(1) condensation \rightarrow nuclear membrane disassembly \rightarrow crossing over \rightarrow segregation \rightarrow telophase
(2) condensation \rightarrow nuclear membrane disassembly \rightarrow arrangement at equator \rightarrow centromere division \rightarrow segregation \rightarrow telophase
condensation \rightarrow crossing over \rightarrow nuclear membrane disassembly \rightarrow segregation \rightarrow telophase
(4) condensation \rightarrow arrangement at equator \rightarrow centromere division \rightarrow segregation \rightarrow telophase
89. Which of the following options best represents the enzyme composition of pancreatic juice?
(1) amylase, peptidase, trypsinogen, rennin
(2) amylase, pepsin, trypsinogen, maltase
(3) peptidase, amylase, pepsin, rennin
(4) lipase, amylase,
trypsinogen, procarboxypeptidase
90. Attractants and rewards are required for:
(1) Anemophily
(2) Entomophily
(3) Hydrophily
(4) Cleistogamy
91. Two blocks A and B of masses 3 m and m respectively are connected by a massless and inextensible string. The whole system is suspended by a massless spring as shown in figure. The magnitudes of acceleration of A and B immediately after the string is cut, are respectively :

92. The acceleration due to gravity at a height 1 km above the earth is the same as at a depth d below the surface of earth. Then :

$$
\begin{equation*}
\mathrm{d}=\frac{1}{2} \mathrm{~km} \tag{1}
\end{equation*}
$$

$$
\mathrm{d}=1 \mathrm{~km}
$$

(3) $\mathrm{d}=\frac{3}{2} \mathrm{~km}$
(4) $\mathrm{d}=2 \mathrm{~km}$
93. A particle executes linear simple harmonic motion with an amplitude of 3 cm . When the particle is at 2 cm from the mean position, the magnitude of its velocity is equal to that of its acceleration. Then its time period in seconds is :
(1) $\frac{\sqrt{5}}{\pi}$
(2) $\frac{\sqrt{5}}{2 \pi}$
(3)

$$
\frac{4 \pi}{\sqrt{5}}
$$

$$
\begin{equation*}
\frac{2 \pi}{\sqrt{3}} \tag{4}
\end{equation*}
$$

94. The resistance of a wire is ' R ' ohm. If it is melted and stretched to ' n ' times its original length, its new resistance will be:
(1) $\quad n R$
(2) $\frac{R}{n}$
(3) $n^{2} R$
(4)

$$
\frac{\mathrm{R}}{\mathrm{n}^{2}}
$$

95. A capacitor is charged by a battery. The battery is removed and another identical uncharged capacitor is connected in parallel. The total electrostatic energy of resulting system :
(1) increases by a factor of 4
(2) decreases by a factor of 2
(3)
remains the same
96. Two rods A and B of different materials are welded together as shown in figure. Their thermal conductivities are K_{1} and K_{2}. The thermal conductivity of the composite rod will be:

(1) $\frac{K_{1}+K_{2}}{2}$
(2) $\frac{3\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right)}{2}$
(3) $K_{1}+K_{2}$
(4) $2\left(\mathrm{~K}_{1}+\mathrm{K}_{2}\right)$
97. The two nearest harmonics of a tube closed at one end and open at other end are 220 Hz and 260 Hz . What is the fundamental frequency of the system?
(1) 10 Hz
(2) 20 Hz
(3) 30 Hz
(4) 40 Hz
98. The bulk modulus of a spherical object is ' B '. If it is subjected to uniform pressure ' p ', the fractional decrease in radius is :
(1) $\frac{P}{B}$
(2) $\frac{B}{3 p}$
(3) $\frac{3 p}{B}$
(4)
99. A physical quantity of the dimensions of length that can be formed out of c, G and $\frac{e^{2}}{4 \pi \epsilon_{0}}$ is [c is velocity of light, G is universal constant of gravitation and e is charge] :

$$
\begin{equation*}
\frac{1}{c^{2}}\left[G \frac{e^{2}}{4 \pi \epsilon_{0}}\right]^{1 / 2} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
c^{2}\left[G \frac{e^{2}}{4 \pi \epsilon_{0}}\right]^{1 / 2} \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\frac{1}{c^{2}}\left[\frac{e^{2}}{G 4 \pi \epsilon_{0}}\right]^{1 / 2} \tag{3}
\end{equation*}
$$

(4) $\frac{1}{c} G \frac{\mathrm{e}^{2}}{4 \pi \epsilon_{0}}$
100. Figure shows a circuit that contains three identical resistors with resistance $R=9.0 \Omega$ each, two identical inductors with indurtance $\mathrm{L}=2.0 \mathrm{mH}$ each, and an ideal battery with $\operatorname{emf} \varepsilon=18 \mathrm{~V}$. The current ' i ' through the battery just after the switch closed is,.....

(1) 2 mA
(2) 0.2 A
(3) 2 A
(4) 0 ampere
101. One end of string of length l is connected to a particle of mass ' m ' and the other end is connected to a small peg on a smooth horizontal table. If the particle moves in circle with speed ' v ', the net force on the particle (directed towards center) will be (T represents the tension in the string)
(1) T
(2) $\mathrm{T}+\frac{\mathrm{m} v^{2}}{l}$
(3) $\mathrm{T}-\frac{\mathrm{m} v^{2}}{l}$
(4) Zero
102. The photoelectric threshold wavelength of silver is $3250 \times 10^{-10} \mathrm{~m}$. The velocity of the electron ejected from a silver surface by ultraviolet light of wavelength $2536 \times 10^{-10} \mathrm{~m}$ is :
(Given $\mathrm{h}=4.14 \times 10^{-15} \mathrm{eVs}$ and $\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1}$)
(1) $\approx 6 \times 10^{5} \mathrm{~ms}^{-1}$
(2) $\approx 0.6 \times 10^{6} \mathrm{~ms}^{-1}$
(3) $\approx 61 \times 10^{3} \mathrm{~ms}^{-1}$
(4) $\approx 0.3 \times 10^{6} \mathrm{~ms}^{-1}$

106. A 250 - Turn rectangular coil of length 2.1 cm and width 1.25 cm carries a current of $85 \mu \mathrm{~A}$ and subjected to a magnetic field of strength 0.85 T . Work done for rotating the coil by 180° against the torque 4 is :
f(1) $\quad 9.1 \mu \mathrm{~J}$
(2) $4.55 \mu \mathrm{~J}$
(3) $2.3 \mu \mathrm{~J}$
$1.15 \mu \mathrm{~J}$
103. Radioactive material ' A ' has decay constant ' 8λ ' and material ' B ' has decay constant ' λ '. Initially they have same number of nuclei. After what time, the ratio of number of nuclei of material ' B ' to that
' A ' will be $\frac{1}{e}$?
(1) $\frac{1}{\lambda}$

(4) $\frac{1}{9 \lambda}$
104. A rope is wound around a hollow cylinder of mass 3 kg and radius 40 cm . What is the angular acceleration of the cylinder if the rope is pulled with a force of 30 N ?
(1) $25 \mathrm{~m} / \mathrm{s}^{2}$
(3) $25 \mathrm{rad} / \mathrm{s}^{2}$
(4) $5 \mathrm{~m} / \mathrm{s}^{2}$

105. Two cars moving in opposite directions approach each other with speed of $22 \mathrm{~m} / \mathrm{s}$ and $16.5 \mathrm{~m} / \mathrm{s}$ respectively. The driver of the first cat blows a horn having a frequency 400 Hz . The frequency heard by the driver of the second car is [velocity of sound $340 \mathrm{~m} / \mathrm{s}$] :
(1) 350 Hz
(2) 361 Hz
(3) 411 Hz
(4) 448 Hz
107. A long solenoid of diameter 0.1 m has 2×10^{4} turns per meter. At the centre of the solenoid, a coil of 100 turns and radius 0.01 m is placed with its axis coinciding with the solenoid axis. The current in the solenoid reduces at a constant rate to 0 A from 4 A in 0.05 s . If the resistance of the coil is $10 \pi^{2} \Omega$, the total charge flowing through the coil during this time is :

$$
\begin{equation*}
32 \pi \mu C \tag{1}
\end{equation*}
$$

(2) $16 \mu \mathrm{C}$
(3) $32 \mu \mathrm{C}$
(4) $16 \pi \mu \mathrm{C}$
108. Suppose the charge of a proton and an electron differ slightly. One of them is $-e$, the other is $(e+\Delta e)$. If the net of electrostatic force and gravitational force between two hydrogen atoms placed at a distance d (much greater than atomic size) apart is zero, then $\Delta \mathrm{e}$ is of the order of [Given mass of hydrogen $\mathrm{m}_{\mathrm{h}}=1.67 \times 10^{-27} \mathrm{~kg}$]
(1) $10^{-20} \mathrm{C}$
(2) $10^{-23} \mathrm{C}$
(3) $10^{-37} \mathrm{C}$
(4) $10^{-47} \mathrm{C}$
or
109. Two astronauts_are floating in gravitational free space after having lost contact with their spaceship. The two will :

keep floating at the same distance between them.
(2) move towards each other.
(3) move away from each other.
110. The ratio of wavelengths of the last line of Balmer series and the last line of Lyman series is :
(1) 2
(2) 1
(3) 4
(4) 0.5
111. The de-Broglie wavelength of a neutron in thermal equilibrium with heavy water at a temperature T (Kelvin) and mass m, is :
(1) $\frac{h}{\sqrt{\mathrm{mkT}}}$
(2) $\frac{h}{\sqrt{3 m k T}}$

(4) $\frac{2 \mathrm{~h}}{\sqrt{\mathrm{mkT}}}$
112. A thin prism having refracting angle 10° is made of glass of refractive index 1.42. This prism is combined with another thin prism of glass of refractive index 1.7. This combination produces dispersion without deviation. The refracting angle of second prism should be :
(1) 4°
(2) 6°
(3) 8°
(4) 10°
113. Thermodynamic processes are indicated in the following diagram.

Match the following :

	Column-1		Column-2
P.	Process I	a.	Adiabatic
Q.	Process II	Isobaric	
R.	Process III	C.	Isochoric S.
Isothermal			

(1) $\mathrm{P} \rightarrow \mathrm{a}, \mathrm{Q} \rightarrow \mathrm{c}, \mathrm{R} \rightarrow \mathrm{d}, \quad \mathrm{S} \rightarrow \mathrm{b}$
(2) $\mathrm{P} \rightarrow \mathrm{c}, \mathrm{Q} \rightarrow \mathrm{a}, \mathrm{R} \rightarrow \mathrm{d}, \mathrm{S} \rightarrow \mathrm{b}$
(3) $\mathrm{P} \rightarrow \mathrm{c}, \quad \mathrm{Q} \rightarrow \mathrm{d}, \mathrm{R} \rightarrow \mathrm{b}, \quad \mathrm{S} \rightarrow \mathrm{a}$
114. A U tube with both ends open to the atmosphere, is partially filled with water. Oil, which is immiscible with water, is poured into one side until it stands at a distance of 10 mm above the water level on the other side. Meanwhile the water rises by 65 mm from its original level (see diagram). The density of the oil is :

(1) $650 \mathrm{~kg} \mathrm{~m}^{-3}$
(2) $425 \mathrm{~kg} \mathrm{~m}^{-3}$
(3) $800 \mathrm{~kg} \mathrm{~m}^{-3}$
(4) $928 \mathrm{~kg} \mathrm{~m}^{-3}$
115. A spring of force constant k is cut into lengths of ratio $1: 2: 3$. They are connected in series and the new force constant is k^{\prime}. Then they are connected in parallel and force constant is $\mathbf{k}^{\prime \prime}$. Then $\mathrm{k}^{\prime}: \mathbf{k}^{\prime \prime}$ is :
(1) $1: 6$
(2) $1: 9$
(3) $1: 11$
(4) $1: 14$
116. Which of the following statements are correct?
(a) Centre of mass of a body always coincides with the centre of gravity of the body.
(b) Centre of mass of a body is the point at which the total gravitational torque on the body is zero.
(c) A couple on a body produce both translational and rotational motion in a body.
(d) Mechanical advantage greater than one means that small effort can be used to lift a large load.
(1) (b) and (d)
(2) (a) and (b)
(3) (b) and (c)
(c) and(d)
117. A beam of light from a source L is incident normally on a plane mirror fixed at a certain distance x from the source. The beam is reflected back as a spot on a scale placed just above the source L . When the mirror is rotated through a small angle θ, the spot of the light is found to move through a distance y on the scale. The angle θ is given by :
(1) $\frac{y}{2 x}$
(2)

$$
\frac{y}{x}
$$

(3)
(4)

$$
\frac{x}{y}
$$

118. A gas mixture consists of 2 moles of O_{2} and 4 moles of Ar at temperature T. Neglecting all vibrational modes, the total internal energy of the system is :
(1) 4 RT
119. Consider a drop of rain water having mass 1 g falling from a height of 1 km . It hits the ground with a speed of $50 \mathrm{~m} / \mathrm{s}$. Take ' g ' constant with a value $10 \mathrm{~m} / \mathrm{s}^{2}$. The work done by the (i) gravitational force and the (ii) resistive force of air is :
(1)
(i) -10 J
(ii) -8.25 J
(2)
(i) 1.25 J
(ii) -8.25 J
(3)
(i) 100 J
(ii) 8.75 J
(i) 10 J
(ii) -8.75 J

120. A carnot engine having an efficiency of $\frac{1}{10}$ as heat engine, is used as a refrigerator. If the work done on the system is 10 J , the amount of energy absorbed from the reservoir at lower temperature is :
(1) 1 J
(2) 90 J
(3) 99 J

100 J
121. An arrangement of three parallel straight wires placed perpendicular to plane of paper carrying same current ' I ' along the same direction is shown in Fig. Magnitude of force per unit length on the middle wire ' B ' is given by :

(1) $\frac{\mu_{0} \mathrm{i}^{2}}{2 \pi \mathrm{~d}}$
(2) $\frac{2 \mu_{0} i^{2}}{\pi d}$
(3) $\frac{\sqrt{2} \mu_{0} i^{2}}{\pi d}$
(4) $\frac{\mu_{0} i^{2}}{\sqrt{2} \pi d}$
122. The x and y coordinates of the particle at any time are $x=5 t-2 t^{2}$ and $y=10 t$ respectively, where x and y are in meters and t in seconds. The acceleration of the particle at $t=2 \mathrm{~s}$ is :
(1) 0
(2) $5 \mathrm{~m} / \mathrm{s}^{2}$
(3) $-4 \mathrm{~m} / \mathrm{s}^{2}$
(4) $-8 \mathrm{~m} / \mathrm{s}^{2}$
123. The ratio of resolving powers of an optical microscope for two wavelengths $\lambda_{1}=4000 \AA$ and $\lambda_{2}=6000 \AA$ is :
(1) $8: 27$
(2) $9: 4$

124. Preeti reached the metro station and found that the escalator was not working. She walked up the stationary escalator in time t_{1}. On other days, if she remains stationary on the moving escalator, then the escalator takes her up in time $t_{\mathbf{e}}$. The time taken by her to walk up on the moving escalator will be:

(2)

$$
\frac{t_{1} t_{2}}{t_{2}-t_{1}}
$$

(3) $\frac{t_{1} t_{2}}{t_{2}+t_{1}}$
(4) $t_{1}-t_{2}$
125. A spherical black body with a radius of 12 cm radiates 450 watt power at 500 K . If the radius were halved and the temperature doubled, the power radiated in watt would be:
(1) 225
(2) 450
(3) 1000

1800

126. A potentiometer is an accurate and versatile device to make electrical measurements of E.M.F. because the method involves :
(1) cells
(2) potential gradients
(3) a condition of no current flow through the galvanometer
 a combination of cells, galvanometer and resistances
127. The given electrical network is equivalent to :

(1) AND gate
(2) OR gate

(1)

(2)

(3)

132. Two Polaroids P_{1} and P_{2} are placed with their axis perpendicular to each other. Unpolarised light I_{0} is incident on P_{1}. A third polaroid P_{3} is kept in between P_{1} and P_{2} such that its axis makes an angle 45° with that of P_{1}. The intensity of transmitted light through P_{2} is
(1) $\frac{I_{0}}{2}$
(2) $\frac{\mathrm{I}_{0}}{4}$
(3) $\frac{\mathrm{I}_{0}}{8}$
(4) $\frac{\mathrm{I}_{0}}{16}$
133. In an electromagnetic wave in free space the root mean square value of the electric field is $\mathrm{E}_{\mathrm{rms}}=6 \mathrm{~V} / \mathrm{m}$. The peak value of the magnetic field is :
(1) $\quad 1.41 \times 10^{-8} \mathrm{~T}$
(2) $2.83 \times 1 \phi^{-8} \mathrm{~T}$
(3) $0.70 \times 10^{-8} \mathrm{~T}$
(4) $4.23 \times 10^{-8} \mathrm{~T}$
134. If θ_{1} and θ_{2} be the apparent angles of dip observed in two vertical planes at right angles to each other, then the true angle of $\operatorname{dip} \theta$ is given by :
(1) $\cot ^{2} \theta=\cot ^{2} \theta_{1}+\cot ^{2} \theta_{2}$
(2) $\tan ^{2} \theta=\tan ^{2} \theta_{1}+\tan ^{2} \theta_{2}$
(3) $\cot ^{2} \theta=\cot ^{2} \theta_{1}-\cot ^{2} \theta_{2}$
(4) $\tan ^{2} \theta=\tan ^{2} \theta_{1}-\tan ^{2} \theta_{2}$
135. The diagrams below show regions of equipotentials.

(a)

(b)

(c)

(d)

A positive charge is moved from A to B in each diagram.
(1) Maximum work is required to move q in figure (c).
(2) In all the four cases the work done is the same.
(3) Minimum work is required to move q in figure (a).
(4) Maximum work is required to move q in

16
136. The reason for greater range of oxidation states in actinoids is attributed to:
(1) the radioactive nature of actinoids
(2) actinoid contraction
(3) 5f, 6d and 7s levels having comparable energies
(4) 4f and 5 d levels being close in energies
137. An example of a sigma bonded organometallic compound is :
(1) Ruthenocene
(2) Grignard's reagent
(3) Ferrocene
(4) Cobaltocene
138. Which one is the wrong statement ?
(1) de-Broglie's wavelength is given by $\lambda=\frac{h}{m v}$, where $\mathrm{m}=$ mass of the particle, $v=$ group velocity of the particle.
(2) The uncertainty principle is $\Delta \mathrm{E} \times \Delta t \geqslant h / 4 \pi$.
(3) Half filled and fully filled orbitals have greater stability due to greater exchange energy, greater symmetry and more balanced arrangement.
(4) The energy of 25 orbital is less than the energy of 2 p orbital in case of Hydrogen like atoms.
139. Mixture of chloroxylenol and terpineol acts as :
(1) analgesic
(2) antiseptic

(4) antibiotic
140. The element $Z=114$ has been discovered recently. It will belong to which of the following family/group and electronic configuration?
(1) Halogen family, [Rn] $5 f^{14} 6 d^{10} 7 s^{2} 7 p^{5}$
(2) Carbon family, $[\mathrm{Rn}] 5 \mathrm{f}^{14} 6 \mathrm{~d}^{10} 7 \mathrm{~s}^{2} 7 \mathrm{p}^{2}$
(3) Oxygen family, [Rn] $5 f^{14} 6 \mathrm{~d}^{10} 7 \mathrm{~s}^{2} 7 \mathrm{p}^{4}$
141. A 20 litre container at 400 K contains $\mathrm{CO}_{2}(\mathrm{~g})$ at pressure 0.4 atm and an excess of SrO (neglect the volume of solid SrO). The volume of the container is now decreased by moving the movable piston fitted in the container. The maximum volume of the container, when pressure of CO_{2} attains its maximum value, will be :
(Given that: $\mathrm{SrCO}_{3}(\mathrm{~s}) \rightleftharpoons \mathrm{SrO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$, $K p=1.6 \mathrm{~atm}$)
(1) 5 litre
(2) 10 litre
(3) 4 litre
(4) 2 litre
142. Predict the correct intermediate and product in the following reaction:

(1)

B:

(2)
A:

B:

(3)

B :
: $\mathrm{H}_{3} \mathrm{C}-\mathrm{C} \equiv \mathrm{CH}$
(4)

B :

143. Which of the following is a sink for CO ?

Haemoglobin

(2) Micro organisms present in the soil
(3) Oceans
(4) Plants
144. Which of the following reactions is appropriate for converting acetamide to methanamine?
(1) Carbylamine reaction
(2) Hoffmann hypobromamide reaction
(3) Stephens reaction
145. The species, having bond angles of 120° is :
(1) PH_{3}
(2) ClF_{3}
(3) NCl_{3}

146. The correct order of the stoichiometries of AgCl formed when AgNO_{3} in excess is treated with the complexes: $\mathrm{CoCl}_{3} .6 \mathrm{NH}_{3}, \mathrm{CoCl}_{3} .5 \mathrm{NH}_{3}$, $\mathrm{CoCl}_{3} .4 \mathrm{NH}_{3}$ respectively is :
(1) $1 \mathrm{AgCl}, 3 \mathrm{AgCl}, 2 \mathrm{AgCl}$
(2) $3 \mathrm{AgCl}, 1 \mathrm{AgCl}, 2 \mathrm{AgCl}$
(3) $3 \mathrm{AgCl}, 2 \mathrm{AgCl}, 1 \mathrm{AgCl}$
(4) $2 \mathrm{AgCl}, 3 \mathrm{AgCl}, 1 \mathrm{AgCl}$
147. For a given reaction, $\Delta \mathrm{H}=35.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta S=83.6 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. The reaction is spontaneous at : (Assume that $\Delta \mathrm{H}$ and $\Delta \mathrm{S}$ do not vary with temperature)

(2) $\mathrm{T}>425 \mathrm{~K}$
(3) all temperatures
(4) $\mathrm{T}>298 \mathrm{~K}$
148. Match the interhalogen compounds of column I with the geometry in column II and assign the correct code.

Column I

(a) XX^{\prime}
(b) XX_{3}^{\prime}
(c) $X X_{5}^{\prime}$
(d) XX_{7}^{\prime}
(iv) Square-pyramidal
(v) Tetrahedral

Code:

	(a)	(b)	(c)	(d)
(1)	(iii)	(iv)	(i)	(ii)
(2)	(iii)	(i)	(iv)	(ii)
(3)	(v)	(iv)	(iii)	(ii)

(4) Gabriels phthalimide synthesis
149. Identify A and predict the type of reaction

(2)

(3)
 and cine substitution reaction
(4)
 and cine substitution reaction
150. Which one of the following statements is not correct?
(1) Catalyst does not initiate any reaction.
(2) The value of equilibrium constant is changed in the presence of a catalyst in the reaction at equilibrium.
(3) Enzymes catalyse mainly bio-chemical reactions.
(4) Coenzymes increase the catalytic activity of enzyme.
151. Name the gas that can readily decolourise acidified KMnO_{4} solution :
(1) CO_{2}
(2) SO_{2}
(3) $\quad \mathrm{NO}_{2}$
152. The correct increasing order of basic strength for the following compounds is :

(I)

(II)

(III)
(1) II $<$ III $<$ I
(2) II $<$ I $<$ II
(3) III $<$ II $<$ I
(4) II $<$ I $<$ III
153. If molality of the dilute solution is doubled, the value of molal depression constant $\left(\mathrm{K}_{\mathrm{f}}\right)$ will be :
(1) doubled
(2) halved
(3) tripled
(4) unchanged
154. Of the following, which is the product formed when cyclohexanone undergoes aldol condensation followed by heating?
(1)

(2)

(3)

(4)

155. The equilibrium constants of the following are:
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3} \quad \mathrm{~K}_{1}$
$\mathrm{N}_{2}+\mathrm{O}_{2} \rightleftharpoons 2 \mathrm{NO} \quad \mathrm{K}_{2}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O} \quad \mathrm{K}_{3}$
The equilibrium constant (K) of the reaction :
$2 \mathrm{NH}_{3}+5 / 2 \mathrm{O}_{2} \stackrel{\mathrm{~K}}{\rightleftharpoons} 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$, will be :
(1) $K_{1} K_{3}^{3} / K_{2}$
(2) $\mathrm{K}_{2} \mathrm{~K}_{3}^{3} / \mathrm{K}_{1}$
(3) $\mathrm{K}_{2} \mathrm{~K}_{3} / \mathrm{K}_{1}$
(4) $\mathrm{K}_{2}^{3} \mathrm{~K}_{3} / \mathrm{K}_{1}$
156. The correct statement regarding electrophile is:
(1) Electrophile is a negatively charged species and can form a bond by accepting a pair of electrons from a nucleophile
(2) Electrophile is a negatively charged species and can form a bond by accepting a pair of electrons from another electrophile

Electrophiles are generally neutral species and can form a bond by accepting a pair of electrons from a nucleophile
(4) Electrophile can be either neutral or positively charged species and can form a bond by accepting a pair of electrons from a nucleophile
157. A gas is allowed to expand in a well insulated container against a constant external pressure of 2.5 atm from an initial volume of 2.50 L to a final volume of 4.50 L . The change in internal energy ΔU of the gas in joules will be :
(1) 1136.25 J
(2) -500 J
(3) -505 J
158. Which of the following pairs of compounds is isoelectronic and isostructural ?
(1)
$\mathrm{BeCl}_{2}, \mathrm{XeF}_{2}$
(2) $\mathrm{TeI}_{2}, \mathrm{XeF}_{2}$
(3) $\mathrm{IBr}_{2}^{-}, \mathrm{XeF}_{2}$
(4) $\mathrm{IF}_{3}, \mathrm{XeF}_{2}$
159. Which is the incorrect statement?
(1) $\mathrm{FeO}_{0.98}$ has non stoichiometric metal deficiency defect.
(2) Density decreases in case of crystals with Schottky's defect.
(3) $\mathrm{NaCl}(\mathrm{s})$ is insulator, silicon is semiconductor, silver is conductor, quartz is piezo electric crystal.
(4)

Frenkel defect is favoured in those ionic compounds in which sizes of cation and anions are almost equal.
160. The heating of phenyl-methyl ethers) with HI produces.
(1) ethyl chlorides
(2) iodobenzene
(3) phenol
(4) benzene
161. Correct increasing order for the wavelengths of absorption in the visible region for the complexes of Co^{3+} is :
(1) $\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
(2) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+}$
(3) $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\text { en })_{3}\right]^{3+}$
(4) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
162. Pick out the correct statement with respect to $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{3-}$:
(1) It is $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridised and octahedral
(2) It is $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridised and tetrahedral
(3) It is $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybridised and octahedral
(4) It is dsp^{2} hybridised and square planar
163. With respect to the conformers of ethane, which of the following statements is true?
(1) Bond angle remains same but bond length changes
(2) Bond angle changes but bond length remains same
(3) Both bond angle and bond length change
(4) Both bond angles and bond length remains same
164. Which of the following is dependent on temperature?
(1) Molality
(2) Molarity
(3) Mole fraction
(4) Weight percentage
165. Which of the following statements is not correct?
(1) Insulin maintains sugar level in the blood of a human body.
(2) Ovalbumin is a simple food reserve in egg white.
(3) Blood proteins thrombin and fibrinogen are involved in blood clotting.
(4) Denaturation makes the proteins more active.
166. The IUPAC name of the compound

is \qquad -.
(1) 3-keto-2-methylhex-4 enal
(2) 5-formylhex-2-en-3-one
(3) 5-methyl-4-oxohex-2-en-5-al
(4) 3-keto-2-methylhex-5-enal
167. HgCl_{2} and I_{2} both when dissolved in water containing I^{-}ions the pair of species formed is :
(1) $\mathrm{HgI}_{2}, \mathrm{I}_{3}^{-}$
(2) $\mathrm{HgI}_{2}, \mathrm{I}^{-}$
(3) $\mathrm{HgI}_{4}^{2-}, \mathrm{I}_{3}^{-}$
(4) $\mathrm{Hg}_{2} \mathrm{I}_{2} \mathrm{I}^{-}$
168. It is because of inability of ns^{2} electrons of the valence shell to participate in bonding that :
(1) Sn^{2+} is reducing while Pb^{4+} is oxidising
(2) Sn^{2+} is oxidising while Pb^{4+} is reducing (3) Sn^{2+} and Pb^{2+} are both oxidising and reducing
(4) Sn^{4+} is reducing while Pb^{4+} is oxidising.
169. Mechanism of a hypothetical reaction $X_{2}+Y_{2} \rightarrow 2 X Y$ is given below :
(i) $\quad \mathrm{X}_{2} \rightarrow \mathrm{X}+\mathrm{X}$ (fast)
(ii) $X+Y_{2} \rightleftharpoons X Y+Y$ (slow)
(iii) $X+Y \rightarrow X Y$ (fast)

The overall order of the reaction will be :
(1) 1
(2) 2
(3) 0
(4) 1.5
170. Concentration of the Ag^{+}ions in a saturated solution of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is $2.2 \times 10^{-4} \mathrm{~mol} \mathrm{~L}{ }^{-1}$. Solubility product of $\mathrm{Ag}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ is :
(1) 2.42×10^{-8}
(2) 2.66×10^{-12}
(3) 4.5×10^{-11}
(4) 5.3×10^{-12}
171. Extraction of gold and silver involves leaching with CN^{-}ion. Silver is later recovered by :

(1) liquation

(2) distillation
(3) zone refining
(4) displacement with Zn
172. Which one is the correct order of acidity ?
(1) $\mathrm{CH}_{2}=\mathrm{CH}_{2}>\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}_{2}>\mathrm{CH}_{3}-\mathrm{C} \equiv$ $\mathrm{CH}>\mathrm{CH} \equiv \mathrm{CH}$
(2) $\mathrm{CH} \equiv \mathrm{CH}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>\mathrm{CH}_{2}=\mathrm{CH}_{2}>$ $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
(3) $\mathrm{CH} \equiv \mathrm{CH}>\mathrm{CH}_{2}=\mathrm{CH}_{2}>\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{CH}>$ $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
(4)
 $\mathrm{CH}=\mathrm{CH}$
173. Ionic mobility of which of the following alkali metal ions is lowest when aqueous solution of their salts are put under an electric field ?
(1) Na
(2) K
(3) Rb
174. Consider the reactions :

Identify $\mathrm{A}, \mathrm{X}, \mathrm{Y}$ and Z
(1) A-Methoxymethane, X-Ethanoic acid, Y-Acetate ion, Z-hydrazine.
(2) A-Methoxymethane, X-Ethanol, Y-Ethanoic acid, Z-Semicarbazide.
(3) A-Ethanal, X-Ethanol, Y-But-2-enal, Z-Semicarbazone.
(4) A-Ethanol, X-Acetaldehyde, Y-Butanone, Z-Hydrazone
175. In which pair of ions both the species contain $S-S$ bond?
(1) $\mathrm{S}_{2} \mathrm{O}_{7}^{2-}, \mathrm{S}_{2} \mathrm{O}_{3}^{2-}$
(2) $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}, \mathrm{S}_{2} \mathrm{O}_{3}^{2-}$
(3) $\mathrm{S}_{2} \mathrm{O}_{7}^{2-}, \mathrm{S}_{2} \mathrm{O}_{8}^{2-}$
(4) $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}, \mathrm{S}_{2} \mathrm{O}_{7}^{2-}$
176. Which one is the most acidic compound ?
(1)

(2)

(3)

177. In the electrochemical cell:
$\mathrm{Zn} \mid \mathrm{ZnSO}_{4}(0.01 \mathrm{M}) \| \mathrm{CuSO}_{4}(1.0 \mathrm{M}) \mathrm{Cu}$, the emf of this Daniel cell is E_{1}. When the concentration of ZnSO_{4} is changed to 1.0 M and that of CuSO_{4} changed to 0.01 M , the emf changes to E_{2}. From the followings, which one is the relationship between
E_{1} and E_{2} ? (Given, $\frac{\mathrm{RT}}{\mathrm{F}}=0.059$)
(1) $\quad E_{1}=E_{2}$
(2) $E_{1}<E_{2}$
(3) $\mathrm{E}_{1}>\mathrm{E}_{2}$
(4) $\mathrm{E}_{2}=0 \neq \mathrm{E}_{1}$
178. A first order reaction has a specific reaction rate of $10^{-2} \mathrm{sec}^{-1}$. How much time will it take for 20 g of the reactant to reduce to 5 g ?

(2) 138.6 sec
(3) 346.5 sec
(4) 693.0 sec
179. The most suitable method of separation of $1: 1$ mixture of ortho and para - nitrophenols is :

(2) Chromatography
(3) Crystallisation
(4) Steam distillation
180. Which one of the following pairs of species have the same bond order?
(1) CO, NO
(2) $\mathrm{O}_{2}, \mathrm{NO}^{+}$
(3) $\mathrm{CN}^{-}, \mathrm{CO}$
(4) $\mathrm{N}_{2}, \mathrm{O}_{2}^{-}$

[^0]: (3)

 Stem
 (4) Leaf

