
www.F
irs

tR
an

ke
r.c

om

A Comparison among Grid Scheduling Algorithms for
Independent Coarse-Grained Tasks

Noriyuki Fujimoto
Graduate School of Information Science and Technology,

Osaka University
1-3, Machikaneyama, Toyonaka, Osaka, 560-8531, Japan

fujimoto@ist.osaka-u.ac.jp

Kenichi Hagihara
Graduate School of Information Science and Technology,

Osaka University
1-3, Machikaneyama, Toyonaka, Osaka, 560-8531, Japan

hagihara@ist.osaka-u.ac.jp

Abstract

The most common objective function of task schedul-
ing problems is makespan. However, on a computational
grid, the 2nd optimal makespan may be much longer than
the optimal makespan because the computing power of a
grid varies over time. So, if the performance measure is
makespan, there is no approximation algorithm in general
for scheduling onto a grid. In contrast, recently the au-
thors proposed the computing power consumed by a sched-
ule as a criterion of the schedule and, for the criterion,
gave (1 + m(loge(m�1)+1)n)-approximation algorithm RR
for schedulingn independent coarse-grained tasks with the
same length onto a grid withm processors. RR does not
use any prediction information on the underlying resources.
RR is the first approximation algorithm for grid scheduling.
However, so far any performance comparison among re-
lated heuristic algorithms is not given. This paper shows
experimental results on the comparison of the consumed
computing power of a schedule among RR and five related
algorithms. It turns out that RR is next to the best of al-
gorithms that need the prediction information on processor
speeds and task lengths though RR does not require such
information.

1 Introduction

Public-resource computing [2], such that the project
SETI@home [2] has been carrying out, is the computing
which is performed with donated computer cycles from

computers in homes and offices in order to perform large
scale computation faster. Public-resource computing is one
form of grid computing. In public-resource computing, the
original users also use their computers for their own pur-
pose. So, their use may dramatically impact the perfor-
mance of each grid resource. In the following, this paper
refers to a set of computers distributed on the Internet and
participated in public-resource computing as acomputa-
tional grid (or simply agrid).

This paper addresses task scheduling of a single
parameter-sweep application onto a computational grid.
A parameter-sweep application is an application struc-
tured as a set of multiple “experiments”, each of which
is executed with a distinct set of parameters [3]. There
are many important parameter-sweep application areas, in-
cluding bioinformatics, operations research, data mining,
business model simulation, massive searches, Monte Carlo
simulations, network simulation, electronic CAD, ecolog-
ical modeling, fractals calculations, and image manipula-
tion [1, 10]. Such a application consists of a set of in-
dependent coarse-grained tasks such that each task corre-
sponds to computation for a set of parameters. For exam-
ple, each SETI@home task takes 3.9 trillion floating-point
operations, or about 10 hours on a 500MHz Pentium II,
yet involves only a 350KB download and 1KB upload [2].
Therefore, for the purpose of scheduling a single parameter-
sweep application, a computational grid can be modeled as
a heterogeneous parallel machine such that processor speed
unpredictably varies over time and communication delays
are negligible.

The most common objective function of task schedul-

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

ing problems (both for a grid and for a non-grid parallel
machine) is makespan. However, on a grid, makespan of
a non-optimal schedule may be much longer than the op-
timal makespan because the computing power of a grid
varies over time. For example, consider an optimal sched-
ule with makespanOPT . If a grid is suddenly slowed
down at timeOPT and the slow speed situation contin-
ues for a long period, then the makespan of the second
optimal schedule is far fromOPT . So, if the criterion
of a schedule is makespan, there is no approximation al-
gorithm in general for scheduling onto a grid. In contrast
to this, recently the authors proposed a novel criterion of
a schedule called TPCC and gave(1 + m(loge(m�1)+1)n)-
approximation algorithm RR for minimum TPCC schedul-
ing of a coarse-grained parameter-sweep application with
the same length tasks wheren is the number of tasks andm is the number of processors [5]. TPCC represents the
total computing power consumed by a parameter-sweep ap-
plication. RR does not use any prediction information on
the performance of underlying resources. Hence, this re-
sult implies that, regardless how the speed of each proces-
sor varies over time, the consumed computing power can be
limited within (1 + m(loge(m�1)+1)n) times the optimal one
in such a case. This is not trivial because makespan cannot
be limited even in the case.

However, so far any performance comparison among re-
lated algorithms is not given. This paper compares the pro-
posed algorithm RR with several related algorithms by sim-
ulation. The remainder of this paper is organized as follows.
First, Section 2 defines the grid scheduling model used in
this paper. Next, Section 3 reviews the proposed algorithm
RR. Then, Section 4 surveys related works. Last, Section 5
shows some experiments and the implication of the results.

2 A Grid Scheduling Model

2.1 A Performance Model

The length of a task is the number of instructions in the
task. Thespeed of a processor is the number of instructions
computed per unit time. A grid is heterogeneous, so pro-
cessors in a grid have various speed by nature. In addition,
the speed of each processor varies over time due to the load
by the original users in public-resource computing. That is,
the speed of each processor is the excess computing power
of the processor which is not used by the original users and
is dedicated to a grid. Letsp;t be the speed of processorp
during time interval[t; t+1) wheret is a non-negative inte-
ger. Without loss of generality, we assume that the speed of
each processor does not vary during time interval[t; t + 1)
for everyt by adopting enough short time as the unit time.
We also assume that we cannot know the value of anysp;t in
advance.sp;t may be zero if the load by the original users is

0

10

2

3

3

3

2

2

2

2

2

7

5

6

5

5

4

4

4

6

6

6

10

0

0

0

4

4

3

10

7

5

P1 P2 P3

(b) processor speed sp,t

v1

v2

v3

v5

v4

P1 P2 P3

0

10

(c) a schedule of T

processor processor

time time

v1 v5v4

v3
v2

(a) set T of five tasks with various length

20 12 17 28 23

Figure 1. The proposed grid scheduling
model

very heavy or the processor is powered off. For simplicity,
processor addition, processor deletion, and any failure are
not considered in this paper. Fig. 1(a) shows an example
of a set of tasks. Fig. 1(b) shows an example of processor
speed distribution. Note that processorP3 has speed zero
during time interval[1; 4). This means one of the following
things:� P3 has no excess computing power due to very heavy

load by the original users during time interval[1; 4).� P3 is powered off during time interval[1; 4).
2.2 A Schedule

Let T be a set ofn independent tasks with the same
lengthL. Let m be a number of processors in a compu-
tational grid. We define a schedule ofT as follows. A
schedule S of T onto a grid withm processors is a finite
set of tripleshv; p; ti which satisfies the following rules R1

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

and R2, wherev 2 T , p (1 � p � m) is the index of
a processor, andt is thestarting time of taskv. A triplehv; p; ti 2 S means that the processorp computes the taskv between timet and timet+dwhered is defined so that the
number of instructions computed by the processorp during
the time interval[t; t + d) is exactlyL. We call t + d the
completion time of the taskv. Note that starting time and
completion time of a task are not necessarily integral.

R1 For eachv 2 T , there is at least one triplehv; p; ti 2 S.

R2 There are no two tripleshv; p; ti; hv0; p; t0i 2 S witht � t0 < t+ d wheret+ d is the completion time ofv.

Informally, the above rules can be stated as follows. The
ruleR1 enforces each taskv to be executed at least once.
The ruleR2 says that a processor can execute at most one
task at any given time. A triplehv; p; ti 2 S is called the
task instance of v. Note thatR1 permits a task to be as-
signed onto more than one processor. Such a task has more
than one task instances. To assign a task onto more than one
processor is calledtask replication.

2.3 Criteria of a Schedule

2.3.1 Makespan

The makespan of scheduleS is the maximum com-
pletion time of all the task instances inS. For
example, Fig. 1(c) shows a schedule ofT , i.e.,fhv1; P1; 0i; hv2; P2; 0i; hv3; P3; 0i; hv4; P2; 11=5i;hv5; P3; 23=4ig. The makespan of the schedule is47=5.

2.3.2 TPCC

Let T be a set ofn independent tasks with the same lengthL. Let S be a schedule ofT onto a grid withm proces-
sors. LetM be the makespan ofS. Let sp;t be the speed of
processorp during the time interval[t; t+ 1). Then, theto-
tal processor cycle consumption (TPCC, for short) ofS is
defined as

Pmp=1PbM�1t=0 sp;t+Pmp=1(M �bM)sp;bM.
For example, TPCC of the schedule in Fig. 1(c) is21+45+38 + 7� 25 + 6� 25 + 5� 25 = 111:2.

The criterion means the total computing power dedicated
to the parameter-sweep application. The longer makespan
is, the larger TPCC is. Conversely, the larger TPCC is,
the longer makespan is. That is, every schedule with good
TPCC is a schedule also with good makespan. The good-
ness of the makespan seems to be reasonable for the dedi-
cated computing power, i.e., the corresponding TPCC . In
this sense, the criterion is meaningful.

2.4 A Grid Scheduling Problem

This paper addresses the following grid scheduling prob-
lem:

� Instance: A setT of n independent tasks with the
same lengthL, a numberm of processors, unpre-
dictable speedsp;t of processorp during the time in-
terval[t; t+ 1) for eachp andt� Solution: A scheduleS of T onto a grid withm pro-
cessors� Measure: either makespan or The TPCCPmp=1PbM�1t=0 sp;t + Pmp=1(M � bM)sp;bM
of S whereM is the makespan ofS

A makespan optimal schedule is a schedule with the
smallest makespan among all the schedules. AnTPCC op-
timal schedule is a schedule with the smallest TPCC among
all the schedules. Note that the set of makespan optimal
schedules is the same as the set of TPCC optimal schedules.

3 The Proposed Algorithm RR

In this section, dynamic scheduling algorithm RR is il-
lustrated. First of all, a data structure called a ring is de-
fined. Then, using a ring of tasks, RR is described.

A ring of tasks is a data structure which manages a set
of tasks. The tasks in a ring have a total order such that
no task has the same order as any other task. A ring has a
head which points to a task in the ring. The head in a ring
is initialized to point to the task with the lowest order in the
ring. The task pointed to by the head is called thecurrent
task. Thenext task in a ring is defined as follows. If the
current task is the task with the highest order in the ring,
then the next task in the ring is the task with the lowest order
in the ring. Otherwise, the next task in a ring is the task with
the minimum order of the tasks with higher order than the
current task. A head can bemoved so that the head points
to the next task. Hence, using a head, the tasks in a ring can
be scanned in theround-robin fashion. Arbitrary task in a
ring can beremoved. If the current task is removed, then a
head is moved so that the next task is pointed to.

RR runs as follows. At the beginning of the dynamic
scheduling by RR, every processor is assigned exactly one
task respectively. If some task of the assigned tasks is com-
pleted, then RR receives the result of the task and assigns
one of yet unassigned tasks to the processor. RR repeats this
process until all the tasks are assigned. At this point in time,
exactlym tasks remain uncompleted. RR manages thesem
tasks using a ring of tasks. Then, RR repeats the following
process until all the remainingm results are received: If the
task instance of some taskv is completed on processorp,
then RR receives the result ofv from p, kills all the task
instances ofv running on processors exceptp, removesv
from the ring, selects tasku in the ring in the round-robin
fashion, and replicates the tasku onto the processorp.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

P1 P2 P3

0

P4

v1

v2

v3

v5

v4

v7
v6

v7

v1
v6

v7

v7

14.5

2

5

8

10

13

processor

time

vi

vi : original

: replica

: completed

: killed

Figure 2. An example of a schedule generated
by RR

The original of taskv is the task instance which is as-
signed earliest of all the task instances ofv. The other
task instances ofv are called thereplicas of v. Notice that
the original of every taskv is unique in a schedule gen-
erated by RR. Fig. 2 shows a schedule which RR gener-
ates from seven tasksfv1; v2; � � � ; v7g for four processorsfP1; P2; P3; P4g in the case that the queueQ is initializedhv1; v2; � � � ; v7i and the ringR is initializedfv1; v3; v6; v7g
with the total orderv1 < v3 < v6 < v7 wherex < y
means that taskx has lower order than tasky. The bar overvi (i 2 f1; 2; � � � ; 7g) represents that the task instance is the
original. A task instance without the bar is a replica. A dot-
ted line represents that the task instance is killed because
one of the other task instances completes earlier than the
task instance. As forv6, the replica completes earlier than
the original. On the other hand, as forv1 andv7, the replica
completes later than the original.

4 Related Works

Static scheduling is the scheduling such that all deci-
sions are done before the execution of a schedule. In con-
trast,dynamic scheduling is the scheduling such that some
or all decisions are done during the execution of a sched-
ule. In a grid, the processor speed of each processor varies
over time. So, dynamic scheduling is more appropriate than
static scheduling.

This section summarizes dynamic grid scheduling algo-
rithms which are recently developed and/or used to com-
pare with other grid scheduling algorithms [3, 10]. These
algorithms are DFPLT, Suffrage-C, Min-min, Max-min and
WQ. In Section 5, all these five algorithms are compared
with the proposed algorithm RR. These algorithms are
based on the following framework: First, all the tasks are
enqueued to a task queue; Whenever a processor becomes
available, the task with the highest priority is dequeued and
that processor are allocated to that task; When several pro-
cessors simultaneously become available, ties are broken in
the manner that depends on each algorithm; This process is
repeated until all the tasks are completed. The difference
among the five algorithms are in how to compute task pri-
orities and how to break ties.

DFPLTF (Dynamic FPLTF) [10] is the result of a modi-
fication Silva et al. made on static FPLTF (Fastest Processor
to Largest Task First) [9] so as to make it adaptive for a grid.
FPLTF is a static scheduler that presents good makespan on
a heterogeneous parallel machine. DFPLTF gives the high-
est priority to the largest task. When several processors si-
multaneously become available, ties are broken arbitrarily.
DFPLTF needs prediction information on processor speeds
and task lengths.

Suffrage-C [3] is a revised version Casanova et al. made
on Suffrage [8] so as to make it easier to implement. There
is no performance difference between Suffrage-C and Suf-
frage [3]. Suffrage-C gives each task its priority according
to its suffrage value. For each task, its suffrage value is de-
fined as the difference between its best completion time and
its second best completion time. The suffrage value of each
task varies over time because of the change of processor
speed in a grid. The idea behind Suffrage-C is that a pro-
cessor is assigned to a task that would suffer the most if that
processor would not be assigned to that task. Suffrage-C
needs prediction information on processor speeds and task
lengths.

Min-min and Max-min are based on static algorithms
presented in [7]. Min-min and Max-min were implemented
in SmartNet [4] and presented in [8].Min-min gives the
highest priority to the task which can be completed earliest.
The ties are broken arbitrarily. The idea behind Min-min
is that assigning tasks to processors that will execute them
fastest.Max-min gives the highest priority to the task with

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

the maximum earliest completion time. The ties are broken
arbitrarily. The idea behind Max-min is that overlapping
long-running tasks with short-running ones. For example,
if there is only one long task, Max-min will execute many
short tasks in parallel with the long task. In contrast, Min-
min will execute short tasks in parallel and the long task will
follow the short tasks. So, in such a case, Max-min is su-
perior to Min-min. Min-min and Max-min need prediction
information on processor speeds and task lengths.

WQ (Work Queue) is a classic algorithm that was orig-
inally developed for homogeneous parallel machines [6].
WQ arbitrarily gives priorities to tasks and arbitrarily breaks
the ties. The idea behind WQ is that faster processors will
be allocated more tasks than slower processors. WQ does
not use any prediction information on processor speeds and
task lengths.

Note that all the above algorithms are heuristic algo-
rithms, i.e., algorithms without performance guarantee. In
contrast to this, the proposed algorithm is an approximation
algorithm, i.e., an algorithm with performance guarantee.
The proposed algorithm is the first approximation algorithm
for grid scheduling.

5 Experiment

We performed 4,370 simulations to compare TPCC of
the proposed algorithm RR with TPCCs of the five related
algorithms, i.e., WQ, DFPLTF, Suffrage-C, Max-min, and
Min-min. We used maximum 1,024 tasks and 256 pro-
cessors. To perform the simulations, we developed a grid
scheduling simulator. Our simulator is faithfully based on
the grid scheduling model described in Section 2. For a
given numbern of tasks, maximum task lengthL, a num-
berm of processors, a maximum processor speeds, and a
scheduling algorithmA, our simulator simulates schedul-
ing n independent tasks with task length2 U(1; L) onto a
grid with m processors with speed2 U(0; s) by A where
U(a; b) represents the uniform distribution froma to b. Fi-
nally, our simulator outputs a Gantt chart, makespan, TPCC,
and an upper bound of the approximation ratio of the TPCC.
The upper bound is computed as follows. LetW be the to-
tal number of instructions in givenn tasks. Since the grid
must perform at leastW instructions until the execution of
a schedule completes, the optimal TPCC is at leastW . So,
the obtained TPCC divided byW is an upper bound of the
approximation ratio.

FPLTF, Suffrage-C, Min-min, and Max-min need the
prediction information on task lengths and processor
speeds. RR and WQ does not require such information.
In our experiments, whenever the prediction information is
needed, our simulator gives the algorithm the precise infor-
mation.

Fig. 3 through Fig. 11 show upper bounds of approxi-

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 15 20 25 30 35 40 45 50 55 60 65

a
p

p
ro

x
im

a
ti
o

n
 r

a
ti
o

number of tasks

RR
WQ

DFPLTF
Suffurage-C

Max-min
Min-min

Figure 3. Approximation Ratios Of
TPCC (task length2 U(1; 30); processor speed2
U(0; 10); 16 processors)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 60 80 100 120 140 160 180 200 220 240 260

a
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o

number of tasks

RR
WQ

DFPLTF
Suffurage-C

Max-min
Min-min

Figure 4. Approximation Ratios Of
TPCC (task length2 U(1; 30); processor speed2
U(0; 10); 64 processors)

mation ratios of TPCC of each algorithms in various cases.
Each plot is the average value of 20 trials.

The approximation ratio of every algorithm tends to de-
crease with an increase in the number of tasks. If the num-
ber of tasks is at least three times the number of processors,
the approximation ratio is less than two.

Usually Min-min is the worst. On the other hand, in
almost all cases, Max-min achieves the best approxima-
tion ratio and RR achieves the best or the second best ap-
proximation ratio. However, Max-min (also Min-min and
Suffrage-C) needs prediction information on the processor
speeds and task lengths. In contrast, RR does not require
any prediction information on the underlying resources and
tasks. Nevertheless, RR is next to the best of algorithms
that use prediction information. So, RR is a good algorithm
when performance information can not be well predicted.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 200 300 400 500 600 700 800 900 1000 1100

a
p

p
ro

x
im

a
ti
o

n
 r

a
ti
o

number of tasks

RR
WQ

DFPLTF
Suffurage-C

Max-min
Min-min

Figure 5. Approximation Ratios Of
TPCC (task length2 U(1; 30); processor speed2
U(0; 10); 256 processors)

 1

 1.5

 2

 2.5

 3

 3.5

 15 20 25 30 35 40 45 50 55 60 65

a
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o

number of tasks

RR
WQ

DFPLTF
Suffurage-C

Max-min
Min-min

Figure 6. Approximation Ratios Of
TPCC (task length2 U(1; 30); processor speed2
U(0; 5); 16 processors)

6 Conclusion

This paper has compared by simulation the consumed
computing power of grid scheduling algorithms for a
parameter-sweep application. The compared algorithms in-
clude algorithm RR which was recently proposed by the au-
thors. RR is an approximation algorithm if the task lengths
are the same though any other existing algorithm is not an
approximation algorithm even in the case. It has turned out
that RR is next to the best of algorithms that need the pre-
diction information on processor speeds and task lengths
though RR does not require such information.

Acknowledgement

This research was supported in part by Grant-in-Aid for
Scientific Research on Priority Areas (15017260) from the
Ministry of Education, Culture, Sports, Science, and Tech-

 1

 1.5

 2

 2.5

 3

 3.5

 4

 60 80 100 120 140 160 180 200 220 240 260

a
p

p
ro

x
im

a
ti
o

n
 r

a
ti
o

number of tasks

RR
WQ

DFPLTF
Suffurage-C

Max-min
Min-min

Figure 7. Approximation Ratios Of
TPCC (task length2 U(1; 30); processor speed2
U(0; 5); 64 processors)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 200 300 400 500 600 700 800 900 1000 1100

a
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o

number of tasks

RR
WQ

DFPLTF
Suffurage-C

Max-min
Min-min

Figure 8. Approximation Ratios Of
TPCC (task length2 U(1; 30); processor speed2
U(0; 5); 256 processors)

nology of Japan and also in part by Grant-in-Aid for Young
Scientists (B)(14780213) from the Japan Society for the
Promotion of Science.

References

[1] D. Abramson, J. Giddy, and L. Kotler. High performance
parametric modeling with Nimrod/G: Killer application for
the global grid? InInternational Parallel and Distributed
Processing Symposium (IPDPS), pages 520–528, 2000.

[2] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky,
and D. Werthimer. SETI@home: An experiment in
public-resource computing.Communications of the ACM,
45(11):56–61, 2002.

[3] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman.
Heuristics for scheduling parameter sweep applications in
grid environments. In9th Heterogeneous Computing Work-
shop (HCW), pages 349–363, 2000.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 15 20 25 30 35 40 45 50 55 60 65

a
p

p
ro

x
im

a
ti
o

n
 r

a
ti
o

number of tasks

RR
WQ

DFPLTF
Suffurage-C

Max-min
Min-min

Figure 9. Approximation Ratios Of
TPCC (task length2 U(1; 20); processor speed2
U(0; 10); 16 processors)

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 60 80 100 120 140 160 180 200 220 240 260

a
p
p
ro

x
im

a
ti
o
n
 r

a
ti
o

number of tasks

RR
WQ

DFPLTF
Suffurage-C

Max-min
Min-min

Figure 10. Approximation Ratios Of
TPCC (task length2 U(1; 20); processor speed2
U(0; 10); 64 processors)

[4] R. F. Freund, M. Gherrity, S. Ambrosius, M. Campbell,
M. Halderman, D. Hensgen, E. Keith, T. Kidd, M. Kussow,
J. D. Lima, F. Mirabile, L. Moore, B. Rust, and H. J. Siegel.
Scheduling resources in multi-user, heterogeneous, comput-
ing environments with smartnet. Inthe 7th IEEE Hetero-
geneous Computing Workshop (HCW’98), pages 184–199,
1998.

[5] N. Fujimoto and K. Hagihara. Near-optimal dynamic task
scheduling of independent coarse-grained tasks onto a com-
putational grid. In32nd Annual International Conference on
Parallel Processing (ICPP-03), pages 391–398, 2003.

[6] R. L. Graham. Bounds for certain multiprocessing anoma-
lies. Bell System Technical Journal, 45:1563–1581, 1966.

[7] O. H. Ibarra and C. E. Kim. Heuristic algorithms for
scheduling independent tasks on nonidentical processors.
Journal of the ACM, 24(2):280–289, 1977.

[8] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and
R. Freund. Dynamic matching and scheduling of a class
of independent tasks onto heterogeneous computing sys-

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 200 300 400 500 600 700 800 900 1000 1100

a
p

p
ro

x
im

a
ti
o

n
 r

a
ti
o

number of tasks

RR
WQ

DFPLTF
Suffurage-C

Max-min
Min-min

Figure 11. Approximation Ratios Of
TPCC (task length2 U(1; 20); processor speed2
U(0; 10); 256 processors)

tems. Inthe 8th IEEE Heterogeneous Computing Workshop
(HCW’99), pages 30–44, 1999.

[9] D. A. Menascé, D. Saha, S. C. D. S. Porto, V. A. F. Almeida,
and S. K. Tripathi. Static and dynamic processor scheduling
disciplines in heterogeneous parallel architectures.Journal
of Parallel and Distributed Computing, 28:1–18, 1995.

[10] D. Paranhos, W. Cirne, and F. Brasileiro. Trading cycles
for information: Using replication to schedule bag-of-tasks
applications on computational grids. InInternational Con-
ference on Parallel and Distributed Computing (Euro-Par),
Lecture Notes in Computer Science, volume 2790, pages
169–180, 2003.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

