www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

P l'“""c;% Avdelning, Institution Datum
£ k- Division, Department Date
3 = 2004-09-10
1. o
ke 3 iy e .
Mg g™ Institutionen for systemteknik
LinkSPinGs universiTET | 581 83 LINKOPING

Sprak Rapporttyp ISBN
Language Report category
Svenska/Swedish Licentiatavhandling ISRN LITH-ISY-EX-3563-2004
X Engelska/English X Examensarbete
C-uppsats Serietitel och serienummer ISSN
D-uppsats

Title of series, numbering
Ovrig rapport

URL for elektronisk version
http:/ /www.ep.liu.se/exjobb/isy/2004/3563/

Titel Ett ramverk i Java for prestandatest av broadcast-krypteringsalgoritmer
Title
A Java Framework for Broadcast Encryption Algorithms

Forfattare Tobias Hesselius, Tommy Savela
Author

Sammanfattning

Abstract

Broadcast encryption is a fairly new area in cryptology. It was first addressed in 1992, and the
research in this area has been large ever since! In'short, broadcast encryption is used for efficient
and secure broadcasting to an authorized group of users. This group can change dynamically, and
in some cases only one-way communication between the sender and receivers is available. An
example of this is digital TV transmissions via satellite, in which only the paying customers can
decrypt and view the broadcast.

The purpose of this thesis is.to develop a general Java framework for implementation and
performance analysis of broadcast encryption algorithms. In addition to the actual framework a
few of the most common broadcast encryption algorithms (Complete Subtree, Subset Difference,
and the Logical Key Hierarchy scheme) have been implemented in the system.

This master’s thesis project was defined by and carried out at the Information Theory division at
the Department of Electrical Engineering (ISY), Linkoping Institute of Technology, during the first
half of 2004.

Nyckelord
Keyword
broadcast encryption, Subset Difference, Complete Subtree, Logical Key Hierarchy, simulation

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

Chapter 1

Introduction

This chapter contains the background, purpose and method of this master thesis,
and an outline of the report.

1.1 Background

In 1992 [1], Shimson Berkovits introduced the subject of broadcast encryption,
and the subject was later formalized by Amos and Moni Naor in 1993 [2].
The subject of broadcast encryption has recoi&wh attention since then, and
several algorithms have been presented. .

Broadcast encryption solves the pr I @how to efficiently do a secure broad-

cast to an authorized set of users. set of users can change dynamically, for
example when a customer in a d @' V network starts or ends a subscription
to a channel. The network coml 1cation between the broadcaster and the users

are often one-way.

Another application of %}dcast encryption is for content protection of record-
able media such as DV]QR®¥&e [9]). In this case the content is stored on a medium
that may be accesse eral years later. This situation does not allow any direct
communication bets§¥n the recorder and the player. The content protection for
DVDs today uses a shared-secret scheme called CSS (Content Scrambling System).
This system was broken in 1999 when a person found the shared secret. If broad-
cast encryption had been used instead, this attack would not be as severe, since
the new DVDs would switch encryption keys and the attack would no longer be
effective.

When deciding on an algorithm for a specific scenario where broadcast encryp-
tion is needed, there is one important fact to remember: The efficiency of the
algorithms will vary depending on the conditions of the scenario. Some of the im-
portant factors can be estimated, like maximum number of users. Another factor

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

1.2. PURPOSE

is if the set of authorized users will be fairly static or change often (the mobility
of the users). It is therefore desirable to select the algorithm that has the best
performance for the specific scenario.

The space and time complexities for the algorithms can often be calculated.
But these estimates do not take into account how often users are added or removed
or how the users are organized. This might significantly affect the performance of
the algorithms.

To easily compare different types of algorithms it would be preferred to perform
practical simulations of each algorithm to see how they behave in each specific
scenario, and then compare the simulation output. This problem is the incentive
for this thesis.

1.2 Purpose

The purpose of this thesis is to provide an environment for implementation and
analysis of broadcast encryption algorithms. This Java framework should include
the basic building blocks needed to easily develop and test new algorithms or im-
prove already existing ones. The specific requirements for the system is presented

in section 3.2.
1.3 Method QO{Q

This thesis work was initiated in Februa%@()ll. The guidelines for the project
were discussed and a preliminary time},&e ras constructed. It was decided that

this thesis would be complete in Sepgfpi@ber 2004 at the latest, although most of
the work should be done before the&mmer.

The main phases for this p"’(},& are:

1. Gathering of informatgyr and theoretical background.

2. Working out the @Quirements of the project.
3. Designing the system.
4. Implementing and testing the system.

5. Writing the report.

The writing of the report is an ongoing activity throughout the entire duration
of the project. It is also estimated that the design and implementation will go
through several iterations before reaching the final product. This will be the most
time-consuming part of the project.

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

Chapter 2

Theory

This chapter contains an overview of the broadcast encryption area in general, and
more detailed descriptions of the algorithms implemented in this system.

2.1 Introduction

Broadcasting means transmitting information through a medium that is accessible
to multiple receivers. A radio transmission for@tance uses air as a medium,
and everyone with a radio receiver is able toQEten to the broadcast. Usually
this communication is one-way, meaning tkag’che receivers are not able to send
anything back to the broadcast center.

In some applications it is desirabdN\b secure the content of the broadcasted
message so that only the authorizQi rs are able to read it. In broadcast encryp-
tion theory these users are said ve privileged, and the non authorized users are
said to be revoked. The terr ‘@ivers and users are sometimes used interchange-
ably. The difference is the t@l\the receivers can access the broadcast message, but
only the privileged use n access the content of the message.

The broadcast mesNge is usually divided into a header and a body part. The
body contains the tected content and the header contains information needed
to access the content (key material and user memberships). The header is the

most important part when analysing these algorithms.

The most simple broadcast encryption scheme would be to encrypt the message
once for each privileged user and then broadcast all encrypted messages. This
is obviously a very inefficient scheme in terms of processing time and broadcast
message size. The aim of all intelligent schemes is to reduce the processing time at
both the broadcast center and at the receivers, to reduce the broadcast message
size and to reduce the storage size at the receivers. The broadcast message size
is dependent on the number of encrypted messages it contains, but also on the

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

2.1. INTRODUCTION

size of the header for the broadcast message. The header often contains critical
information such as encrypted keys and information about which receivers can
decrypt the message.

A broadcasting algorithm encrypts a message so that multiple users can decrypt
it. This can be done in many ways depending on which algorithm is used. To send
a message to multiple users means grouping them together. The way in which this
is done is critical to the performance of the algorithm. The method of grouping
might be dynamic or predefined. In the second case, performance will be affected
by how the privileged and revoked users are ordered within the set. It is thus very
important that grouping is done in an intelligent manner.

In the dynamic case, one way to do this is to build a key graph that is a set
of encryption keys ordered in a graph (see section 2.3.1 for more details). The
authorized users are added to this graph, and the keys are distributed. When
a user is added or removed from the authorized set a rekeying strategy is used,
changing the appropriate keys in the graph and transmitting the new keys to
the subscribed users. The strategy is constructed in a way so that it guarantees
that the newly added user can decrypt the following transmissions, and that any
removed user’s keys are made unusable. This is called the Logical Key Hierarchy
scheme and is described later in this chapter.

In many cases, one does not want to force ser to be connected to the
broadcast network at all times. In the exampye ¥ digital TV, the user must still
be able to watch the subscribed channelg a9 the receiver has been turned off
during the night or unplugged from the 1@(ork for a period of time. This means
that the broadcast center cannot se f&(oying information when a user is added
or removed, since this informatio ight be lost for some receivers that require

this information to function [g@ Ar.

This is the same proble get when the receivers are stateless, meaning that
the receivers cannot upd heir state (or keys) between sessions. All information
needed to decrypt the 2yR&sSage (given the information in the current broadcast) has
to be stored in the receivers from start. This is again the case for many digital TV
networks, where the user usually receives a smartcard containing the decryption
keys when starting a channel subscription for the first time.

The storage size requirement for the receiver is a very important factor in a
good broadcast encryption scheme. This is because the receiver’s secure storage
space is often very limited, e.g the memory capacity of a smartcard, or the avail-
able memory in a mobile telephone. At the same time, many of the applications
for broadcast encryption require the receivers to store a large number of keys.
Fortunately there are algorithms to effectively deal with these problems.

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

2.2. STATELESS SUBSET-COVER ALGORITHMS

2.2 Stateless Subset-Cover Algorithms

The algorithms that will be presented here are stateless, which means that the
initialization step for the receivers only needs to be performed once. After that,
the receivers will be able to decrypt any message, as long as they are privileged,
without having to update any of their stored information.

Two algorithms will be explained in this chapter: Complete Subtree and Subset
Difference. These algorithms are flezible with respect to the number of revoked
users, r, which means that the storage size at the receiver is not a function of r.
This is an important characteristic of the algorithms because it allows dynamic
changes in user access rights without having to update the receivers.

It has also been proven that the Subset Difference algorithm offers a substantial
improvement over other methods (see section 2.4) in terms of efficiency. This
improvement is due to the fact that the key assignment is computational rather
than information-theoretic. For a more detailed discussion and proof see [3].

These algorithms give a pre-defined grouping of the users. Each group is called
a subset, S, and a user can be a member of several subsets. To distinguish these
subsets each subset is assigned an index. In the Complete Subtree algorithm this
index is simply an integer, ¢, refering to a node in a binary tree. In the Subset
Difference algorithm this index is a pair of integers, (i, 7), refering to two nodes.

The cover, C', is defined as the set of subs hat precisely contain all the
privileged users, U, and none of the revoked " R. The terms user and receiver
will be used interchangeably in the followilig scctions. The subsets in a cover are
always disjoint, which means that a elongs to at most one subset in the
cover. This is not essential for the Tthms to work, but rather a consequence
of how the subsets are organized ill be seen later.

The cover and set of privil users can be expressed as shown below. The
notation is for the ComplgiaSUbtree algorithm but can easily be rewritten to
comply with the Subset Riference algorithm.

C — {Sq',l-/shy c '7Sim,}

U= U Si;/
J=1
Each subset is associated with a secret key, L. This key is only known to those
users that belong to that subset. The initialization step encompasses sending the
secret keys to the receiver and these keys make up the secret information stored at
the receiver. Actually the secret information does not have to consist of the keys
directly, rather it must contain the information needed to be able to deduce all the
keys, which might be much more efficient (as in the Subset Difference algorithm).

7

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

2.2. STATELESS SUBSET-COVER ALGORITHMS

subsets the user belongs to, in other words, all the subsets from the leaf to the
root node. The size of the secret information is therefore O(log(N) + 1).

The Steiner tree for the set of revoked can easily be used to generate the cover:
simply add all the subsets that are at distance one from the Steiner tree graph.
These subsets do not belong to the Steiner tree and therefore all users of those
subsets must be privileged.

Encryption

The purpose of encrypting the message is that only the privileged users should be
able to read it. These users are all enveloped by the subset-cover. This means
that they are a member of one subset in the cover and therefore have the key to
that subset. The broadcast center uses these keys to encrypt the message in the
following way:

1. Choose a random session key K and encrypt the message using an encryption
function F(M).

2. For each subset in the cover, encrypt the session key using an encryption
function Ey,(K), where L; is the secret key associated with that subset.

3. Add the encrypted keys along with their in s to the broadcast message
header and the encrypted message to th({&badcast message body.
Only the privileged users will be ablo&hﬂecrypt the session key since none of
the revoked users have a subset key i? @@ cover.
A

Decryption ’\\6

since the receiver has stored all the keys that it needs
to decrypt. The only pr is to search if the user belongs to any subset specified
in the broadcast mess 1eader. When a subset is found the corresponding key
can be retrieved from the secret information in constant time. The decryption can
be divided into these steps:

Decryption is a simple matt

1. Search the header for a subset S; that the user belongs to.

2. Retrive the subset key L; from the secret information.

w

. Decrypt the session key K using E,'(Ep,(K)) = K.

W

. Decrypt the message using Fy' (Fx(M)) = M.

10

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

2.2. STATELESS SUBSET-COVER ALGORITHMS

One way to check if the user belongs to a subset is to trace the path from the
user to the root, and check if any of the subsets along the path are in the header.
Another more efficient way is to represent the index by a binary bitset , where a
left node is represented by a 0 and a right node is represented by a 1. For example
the subset with index 9 would be represented by the bitset 010. To check if a user
belongs to a subset, simply check if the subset bitset is a suffix in the user bitset.

2.2.2 Subset Difference

This algorithm has many similarities with the Complete Subtree algorithm. It may
also be represented as a binary tree with the users as the leaves, although as will
be shown, this algorithm is more efficient in describing the subset cover. This
is mainly because a user may belong to substantially more subsets than in the
previous algorithm.

In the Subset Difference algorithm the subsets are defined by two nodes in the
tree. The subset .S ; is defined as containing all users that are descendants of node
i, but not descendants of node j. This can be written as S; ; = S; \ S;.

Figure 2.3: Subset-cover for the Subset Difference algorithm. The users at node
18 and 20-25 are revoked.

In figure 2.3 seven users are revoked, which results in a cover that contains four
subsets: S318, 5920, S25 and Siz95. The subsets can be seen as shaded triangles
in the tree. The light gray color marks a privileged tree and the dark gray color
marks a revoked tree.

11

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

2.2. STATELESS SUBSET-COVER ALGORITHMS

Labels

The number of possible keys in this algorithm is substantially larger than in the
previous algorithm, O(N) instead of O(log(/N)). In general this amount of keys
is impossible to store directly at the receiver. Instead a structure called label is
introduced. Each node is associated with a label, I, and all possible subset keys
can then be derived from these few labels.

A label is a random set of bits that are generated during the initialization
step of the algorithm (just like the keys in the Complete Subtree algorithm are
generated).

To derive the subset keys a pseudo-random sequence generator, G : {0,1}" —
{0,1}3", is used. This generator is a strong one-way function that triples the
input length. It is crucial for the security of the algorithm that this function is not
invertible. The output of this function is divided into three parts: left, right and
middle. The left and right parts are called intermediate labels, denoted I; ;, and
are used when initializing the receivers. For simplicity, the generator is sometimes
seen as a combination of three separate functions: G, Ggr and G}y, producing the
left, right and middle part of the output.

When generating a subset key the generator is applied to a label in a recursive
manner. In figure 2.4 the procedure of generating the key for subset S; g and Sy 12
is illustrated (with two separate notations). The 1 for node 2, I, is used to
start with. It is passed through the genercxtor G tQroduce the output Wa. Since
node 12 is a descendant of the left child of n é& the left part of W5 is passed
through the generator to give the output In the next iteration, node 12 is a
descendant of the right child of node 5 Q& right part of Wy 5 is used to generate
the output Wy 2. To get the key Ly (are middle part of W5 ;9 is extracted.

This reduces the amount of infi ion to store in the receivers since one label
may be used to derive all subs %thdt originate from that label.

Initialization

Creating the cover is™Mghtly more complex than in the Complete Subtree algo-
rithm. It requires a recursive algorithm that operates on the Steiner tree. The
subsets can be traced in the tree by starting at a node that has out-degree one, and
ending at a node that has an even out-degree (zero or two). This creates chains
in the tree that, for a subset S; ; in the cover, start at node ¢ and end at node j.
In figure 2.5 these chains circle the four subsets in the cover. For example, the
chain starting at node 2 and ending at node 5 creates the subset Sy 5. The Steiner
tree at node 2 has an out-degree of one and the node at 5 has an even out-degree.
The broadcast center must also randomly select labels for all the nodes in the
tree. Then it must supply the receivers with the labels they need to derive all the

12

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

Gr(I1)=I14

4) GL(I14)=I19

14

GMm(I19)=L19

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

2.3. STATEFUL ALGORITHMS

2.3 Stateful Algorithms

As opposed to the stateless algorithms, a stateful algorithm requires that the
receivers have to be able to update the stored keys, usually when users are added
or removed from the privileged user set. This usually also means that an privileged
receiver has to be connected to the broadcast network at all times, in order not to
lose any key update messages that might be sent. This is the case with the Logical
Key Hierarchy scheme that is explained below.

2.3.1 Logical Key Hierarchy

The Logical Key Hierarchy (LKH) scheme was first presented in 1997 by a group
led by Chung Kei Wong [5]. The basic idea of LKH is to build a graph that contains
a set of encryption keys (this graph is called a key graph), and add the privileged
users to it. When adding or removing a user, the keys in the graph are updated
in a way that guarantees that a newly added user cannot use the obtained keys to
decrypt previous broadcasts (called backward access control), and that a removed
user’s keys can no longer be used for decrypting future broadcasts (called forward
access control). Each time the key graph is reconstructed the newly changed keys
are distributed to a subset of the users. This also means that as opposed to the
Complete Subtree and Subset Difference algorithm@he LKH scheme does not
work with stateless receivers.

Below is a more detailed description of 1&(&0 key graph is constructed and
how adding and removing a user is done.Q
Structure of the Key Graph (b'

A

The key graph is a directed ge %graph with two types of nodes: the u-nodes
representing users and the N des representing keys. Each k-node is assigned a
unique random key. At fi he graph does not contain any nodes except for the
root node. More nodes added dynamically when a user wants to join the graph,
as explained below.

For simplicity we assume that the graph is constructed as a tree with degree d.
The tree degree is the maximum number of incoming edges of a node in the tree.
An example of this can be seen in figure 2.7.

Adding and Removing Users

The broadcast center that handles the graph is called the server. When a user
sends a join request to the server, the server and user first authenticate each other
using a protocol such as SSL. If the user is authenticated and accepted to join

16

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

‘-u.l‘ "u,g‘ |-u.3| |'u.4| ‘ua| ‘-uﬁ| |fu_7| |-u.3| |'U,g‘

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

2.3. STATEFUL ALGORITHMS

Removing a user is done in a similar way. First the corresponding u- and k-
nodes are removed from the graph. To prevent the removed user from decrypting
future broadcasts, new keys are calculated for all k-nodes in the path from the
leaving point to the root. These new keys are then distributed to the remaining
users in the same way as described above. This guarantees forward access control.

Individual vs Batch Rekeying

The above algorithm for adding and removing users from the key tree is called
individual rekeying. The name comes from the fact that rekey messages are sent
after each individual join/leave. However, individual rekeying has two problems.
The first problem is that this algorithm is very inefficient when doing a large
amount of join/leaves, since rekey messages are sent after each request. This is
often not needed, especially if the message broadcasts happen rarely compared to
the frequency of join/leave requests. The other problem is an out-of-sync problem
between keys and data (see [7] for a discussion about this problem).

A solution for the first problem would be to collect all join/leave requests that
arrive over a period of time (the rekey interval), and process all of them at the
same time. Rekey messages are then created from the resulting key tree, after
all requests have been processed. This reduces the number of rekey sessions from
J + L (the number of joining and leaving users) tqed0NThe batch rekeying algorithm
presented in [7] does this by defining a set of ryl¢¥or how to add and remove users
from the tree, and by using node Inarkmg%& ecide what node keys needs to be

updated. This algorithm is described k\l(‘@

e J = L: All leavers are repl @by the joiners. All nodes from the replace-
ment locations to the root 2 marked UPDATE.

e J < L: Replace the &Howest leavers with the J joiners. Mark all nodes
sJlocations to the root UPDATE. Mark the remaining
leavers DELET, " a node’s children are all marked DELETE, mark it
DELETE as . Mark all the nodes lying on the path from a node marked
DELETE to the root UPDATE.

rr

from the replacem

e J > L = 0: Find a shallowest leaf node v and remove it from the tree. Create
a new tree T' that has all joiners and v as leaf nodes. Attach this tree to the
old location of v. Mark all T’s internal nodes NEW and mark all the nodes
from the root to the parent of v’s old location UPDATE.

e J > L > 0: Replace all leavers with joiners. Find the shallowest leaf node
v of the replaced nodes and remove it from the tree. Construct a new tree
T that has the remaining joiners and v as leaf nodes. Attach the tree to the

19

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

2.4. COMPLEXITY ANALYSIS

old location of v. Mark all 7”s internal nodes NEW and mark all the nodes
from the root to the parent of v’s old location UPDATE.

After doing this, all nodes marked DELETE are removed from the tree. Rekey-
ing messages are then created according to the selected rekeying strategy, using
the nodes marked NEW or UPDATE. For examples and more discussions about
this algorithm, see [7].

Some relaxed versions of batch rekeying exists, for example the simple-batch
algorithm in [8]. This algorithm offers nearly the same performance as the batch
rekeying, while having a less complex implementation.

Encryption/Decryption

When broadcasting a message to all privileged users, the message can simply be
encrypted with the root key. Since the authorized users (and only those) already
have the current root key from the rekeying messages, they can decrypt the mes-
sage without doing any additional computation. Thus the complexity for both
encrypting and decrypting a broadcast is O(1). In the same way, it is also possible
to encrypt a message to only a group of users that share a group key by encrypting
with this shared key.

Security @)
& N

One problem with using rekey messages %g’at a user could masquerade as the

server and send unauthorized rekeying nadgdages. To prevent this, a message digest
such as MD5 can be calculated for ekeying message and each digest signed
with the server’s private key. The ed digest is then transmitted along with the

rekeying message. However, ’X&Nould require as many digital signature opera-
tions as there are messages. iee digital signature operations are computationally
expensive [6], it would b ferred to reduce the amount of these operations in
some way. Wong, Gouq®®d Lam presented in [5] and [6] techniques to reduce the
number of digital signa®ires to one per set of rekeying messages, greatly improving
performance, especially for user- and key-oriented rekeying.

2.4 Complexity Analysis

In table 2.1 the efficiency of a few of the most common encryption schemes are
listed. The most important factors when evaluating a broadcast encryption scheme
are broadcast message size, storage space at the receivers (sometimes also at broad-
cast center) and processing time.

20

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

Chapter 3

System Overview

This chapter describes the development from specification to implementation and
gives an overview of the design and graphical user interface of the system. The
chapter ends with a detailed description of how to extend the system.

3.1 Introduction

cast encryption algorithms can be implemente tested. The system currently
implements all the algorithms discussed in t{gprevious chapter. It is an essen-
tial criterion for the system that it can l@*e)%tended and handle a wide array of
algorithms. \&

One of the requirements for this @ect was that the system should be imple-
mented in Java. The entire proje&gss implemented in a Java package named beaf,
which stands for Broadcast Erg@yption Algorithm Framework.

The idea of this framewGWs to provide a class hierarchy that can be used as
othms. In fact, to add a new algorithm to the system
the developer only ne o implement two classes. The framework also provides
an application envipghent with a graphical user interface. Through this interface
the developer is presented with the basic functionality needed to interact with the
algorithms.

The purpose of this project is to develop a framgfork in which different broad-

a basis to develop new &

3.2 Requirements

In the beginning, the purpose of this project was to create a framework for im-
plementing algorithms and perhaps interacting with the algorithms. This did not
seem adequate since it did not give much detailed information about the algo-
rithms. The most interesting aspects of a broadcast encryption algorithm are its

23

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

3.3. DESIGN

security, efficiency, resource requirements, and limitations. The system should
therefore provide feedback on these properties.

All the algorithms share the concept of multiple users that may or may not be
privileged. Handling these users and defining which ones are privileged has also
been made an integral part of the system.

The following is a list of the requirements that the system was designed for:

e [t should be possible to simulate a broadcasting environment with a broad-
casting center and receivers.

e [t should support a graphical representation of the algorithms.

e [t should be possible to define which users are privileged and which ones are
revoked.

e It should be possible to dynamically modify the parameters for the algo-
rithms.

e [t should be possible to gather statistical information on the algorithms.

e [t should be possible to display the statistical information in a graph.

e [t should be possible to run simulations on @algorithms with predefined
input. &(J

e [t should contain implementations e Complete Subtree, Subset Differ-
ence, and Logical Key Hierarchy ithms.

o
3.3 Design Q&\

"ray of algorithms the system must be very general.
At the top of the hierarcQ¥ s the base class for all broadcast encryption algorithms,
the BroadcastEncrypttdnAlgorithm class. This class is subclassed to specialize the
behavior of the algorithm. As is shown in figure 3.1, the class BinaryTreeAlgorithm
is a subclass to BroadcastEncryptionAlgorithm, and holds some common function-
ality for the classes CompleteSubtree Algorithm and SubsetDifferenceAlgorithm.

The server and client side versions of the algorithms are implemented in dif-
ferent classes to better separate the encryption and decryption functionality. The
client side functionality of the algorithms are all implemented in subclasses of
BroadcastDecryptionAlgorithm, see figure 3.2.

The framework uses polymorphism to easily handle the different algorithms.
This is a necessary design decision since all the algorithms must be run in the same

In order to support a broa

24

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

BroadcastEncryoliondlgonthm AlgorithmFactary
/ \
LKHAlgarithm Binansfreedlgonihm
/ \
CompleteSubtreaAlgorithm SubsetDifferenceAlgorithm
BroadcastDecnyplionAlgarnithim Zlient
/ \
CompleteSubtreeClient SubsetDifferenceClient
LKHClient

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

AlgonthmPane!

AlgorithmFactony

AN

LKHFanel Binan/TreePane!

CompleteSubtreePanel

SubsetDifferenceFPanel

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

3.3. DESIGN

BroadcastDecryptionAlgorithm

This base class is used for implementing the client side version of an algorithm,
and is used by the Client class for decrypting the messages sent by the server.

AlgorithmPanel

This is the base class for representing the algorithms in a graphical interface. By
subclassing this class, an algorithm can show algorithm specific information and
allow user interaction with the algorithm.

AlgorithmFactory

This is a factory class for generating an instance of an algorithm, together with
the corresponding AlgorithmPanel.

Server and Client

The Server and Client classes use TCP /IP sockets to establish direct communica-
tion. All connected clients are registered at the server, so that when an algorithm
does a broadcast, it is automatically sent to all c&nected clients.

O

Statistics &Q
The Statistics class is used for storin erated performance data (statistics)
from algorithms and simulations. Q xample of data that is being generated
and reported by the CS and SD hms is the number of subsets for a specific
user configuration. These statigghe can later be used for complexity analysis.

The application contair \’éﬂ instance of this class, and the data reported to
this object is presented ir Ne statistics panel and chart, see appendix B.

Simulation

The Simulation class has several methods for performing different types of sim-
ulations on the algorithms. This includes a batch file mode that is capable of
performing a series of simulations with given parameters. See appendix C for a
description of the batch files.

3.3.2 Cryptography

This application uses the standard Java packages java.security and javax.crypto for
encryptions and other cryptographic operations. In addition to the standard Java

27

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

3.4. SYSTEM EXTENSION

API documentation, see [12] for a good overview of these packages and examples
on how to use them.

These standard packages lack some encryption algorithms, for example AES,
but the existing algorithms (DES and 3DES among others) were considered enough
for this system. If other algorithms are required in the future, some external
package supporting those algorithms will have to be provided.

3.4 System Extension

This section describes how some of the probable extensions of the system should
be done.

3.4.1 Adding an Algorithm

The system can easily be extended with new algorithms. To do this, the following
steps should be performed:

1. Subclass BroadcastEncryptionAlgorithm and implement the server side func-
tionality of the algorithm.

2. Subclass AlgorithmPanel and implement the@ithm specific user interface
(this is an optional step). R

3. Modify AlgorithmFactory to be abl create instances of the above classes.

4. Subclass BroadcastDecryptior. rithm and implement the client side func-
tionality of the algorithm (}Cey¥tryption capability is wanted).
AN
5. Modify Client to be a} go handle the new decryption algorithm.

d description of how to do the above steps. All created
a specific package for that algorithm, like beaf.lkh.

Below is a more de
classes should be put 1

Subclass BroadcastEncryptionAlgorithm

This is the major part of the implementation of an algorithm. Subclass Broad-
castEncryptionAlgorithm and implement the server-side functionality of the al-
gorithm. The provided interface includes retrieval and setting of algorithm pa-
rameters, updating the algorithm with new user configurations, and methods for
server-client communication. See the Javadoc for details on what methods to
implement, and functional descriptions of those methods.

28

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

3.5. EXTERNAL DEPENDENCIES

Subclass AlgorithmPanel

If any type of algorithm specific in- or output is wanted in the user interface,
subclass AlgorithmPanel and implement the interface to it. The corresponding
algorithm object will be provided during construction to allow the panel to com-
municate with the algorithm directly.

Modify AlgorithmFactory

Modify the AlgorithmFactory class to be able to create objects of the above al-
gorithm and panel classes. The methods to modify are getInstance and getAvail-
ableAlgorithms.

Subclass BroadcastDecryptionAlgorithm

Subclass the BroadcastDecryptionAlgorithm class and implement the client-side
behaviour of the algorithm. See the Javadoc for details on what methods have
to be implemented. In short, the algorithm will receive control and broadcast
messages sent by the server-side algorithm, and it is up to this class to process
the algorithm specific messages (server-client control messages are automatically

filtered and not visible to this class).
O

Modify Client @)

Modify the algorithm allocation code in E@*}fmcess method of the Client class to

be able to allocate the newly created dcastDecryptionAlgorithm object.

(%
3.4.2 Adding a Simu‘&n

Additional simulation typ@t&n be added to the system. To do this, implement
new methods (and corregpnding working thread) in the Simulation class. Please
see the existing randggThethod and its working thread (RandomThread) for de-
tails.

3.5 External Dependencies

The system uses two non-standard libraries to improve the usability and reduce

the development time. These packages are:

JFreeChart [16], a library for chart drawing. This is used by the Statistics-
ChartFrame class to draw the actual chart. It can also generate PNG-image
output of the charts.

29

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

Chapter 4

Results

This chapter shows how the final program looks and a few examples of simulation
output created by the program. Also the major limitations and advantages of this
program is discussed.

4.1 System

The program (see figure 4.1) looks like a typical windows application. From the
menu it is possible to choose which algorithm Qt? Yplay, the size of the algorithm

and other parameters. A simulation can als§ e started from the menu on the
current algorithm or from a file. This Wié%énerate statistics data which can be
viewed in a special chart window. \l~

In the main GUI of the applicgddn the algorithm is displayed and several
buttons to interact with the alggkgin are available depending on the algorithm

chosen. The general usage of {fg adcasting algorithm is to broadcast data to its
clients and this can be don?_l -licking the broadcast button. A message will then
be shown in the client ydpdow telling the user if the message was received and
decrypted correctly.

The algorithms are implemented allows the user to interact with them.
For instance, it is possible to add /remove users to/from the algorithm and see how
the algorithm updates it’s structures.

See appendix B for a more detailed description of the user interface and program

functionality:.

4.2 Simulation

A few examples of output generated by the program are shown in figures 4.2, 4.3,
4.4, 4.5 and 4.6. They are generated by executing a broadcast scenario in which

31

www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

g& BEAF - Broadcast Encryption Algorithm Framework

File Algorithm User Configuration

Simulation

Statistics

=10l]

—Algorithm Display: Subset Difference

Dizplay

[V Index
[~ User Index
™ Outire

¥ Cover

Save EPS |

—Control Panel

Users:l Al Remaove | Algorithrm: Inttizlize | Eroadcast ||HE||0 wvarlcll

~Situlation Cutput :—Cliem Cutpt (Client 10 03
ezzage size: 0O d EIIOCHCINY dIgUEIcim: CUONPIECE SUDCEes ;I
Privileged users: 0 C5: User size: 32
evoked users: 1024 F** Allocating algorithm: Subset Difference
Secret size: 56 GD: User size: 32
Simmlation iterations: 10 F¥+% Allocating algorithm: Subset Difference
Simulation parameters: Pir)=1.0 Gl User size: 65536
Simulation type: Random #%+% ALllocating algorithm: 3ubset Difference
zers: l0z24 - Al User size: 32
F#% Allocating algorithm: Subset Difference
5D User size: 16
-
¥ Cliert active [pleaze read tooltip)

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

4.3. LIMITATIONS

the broadcast center sends messages to one receiver. During this process statistics
about the algorithm is gathered.

In figure 4.2 the cover sizes for the Complete Subtree algorithm and the Subset
Difference algorithm are compared. In these algorithms this is the same as the
message header size. The message size should be O(rlog(£)) for the Complete
Subtree algorithm and O(r) for the Subset Difference algorithm (see table 2.1).
Since % = 10 in this example the only difference between the message sizes is a
constant factor.

By averaging the cover sizes (for user sizes from 128 to 16384) in figure 4.2
for the Subset Difference algorithm an expected message size of about 1.06r is
obtained. This is small compared to the average 1.38r suggested in [3]. However
this average is quite dependant on the scenario and the user sizes tested.

In figure 4.3 the secret sizes (or number of keys/labels at the receivers) are
plotted. The Subset Difference algorithm has a greater secret size which is also
seen in table 2.1.

The Subset Difference algorithm always performs better than the Complete
Subtree algorithm in terms of cover size, as can be seen in figure 4.4. In this
example the user size is set to 1024 and the number of revoked users is increased
for each simulation.

Figures 4.5 and 4.6 show some results of the LKH algorithm. Figure 4.5 shows
the average number of rekey messages sent per ate, for a span of user sizes.
As expected (see [5]) the group-oriented rekgy¥ad constantly produces one rekey
message per update, while the user- and k@&—oriented strategies generate a larger
number of messages.

Figure 4.6 displays the number of \,#ptions made per update. Since the user-
oriented strategy encrypts the updt®d keys with the individual keys, the number
of encryptions are significantly, &‘er compared to the key- and group-oriented
strategies. Since the key- gaiQ\gfoup-oriented strategies basically function in the
same way, except for the c&mtruetion of the rekey message, they have an equal
number of encryptions update. This is again correct according to [5].

4.3 Limitations

The system has some limitations as explained below:

Algorithm Size. All the algorithms have upper limits to the number of users
they can contain, depending on how much memory is available. On the
testing machine the limits for CS were 2'8 users, for SD 2'7 users and for
LKH approximately 2'4 users.

Performance. Since the system is written in Java, performance may not be as

33

www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

[ousseyi 1esang —e - senang sjejdwe) —m— |

az|s 195

ak

ZE

Z15 95z BZL

FzoL

Z618

FEEOL

[

e

Cover size

- vl

L eyl

Pl

www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

[BIUEUBYI] 1ESONS —e — BENANE ME|dLoT ----—]

128

az]

IS a5z HEL 2 ZE g1

+eoL

a6t BFOE

2618

SEOSH HRLEE PREDL

Secret size

G2 & 88

www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

=]

[souassi 1esans —e - sanang sleldwe; —m— |

L]

LS

Fe £5L £01

i0E 952

£%8 215 0% 60F ®SE

S99 FLO

Zi6 g6 0.8 GIB BEL OLL

FZ0E

Cover size
— — — 2 L= [~
[5 =4 M g
h L= o (=] o

]

Qe

S2E

05
GIE
Ol

www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

Rekey messages

b

17

16

15

14

13

12

11

10

256 812 TEE 1024 1280 1536 1792 2048

Privileged users

—m— Useroriented —-#— Key-oriented - - Group-oriented

www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

Mumber of encryptions

G0.0
87.5
85.0
52.5
&0.0
47.8
45.0
42.5
40.0
378
350
3258
30.0
27.5
25.0
225
20.0
1758
15.0
125
10.0

7.5

5.0

248

0.0

256

=] 1024 1280 1536

Privileged users

—m— Useroriented —-#— Key-oriented - - Group-oriented

1702 2042

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

4.4. ADVANTAGES

good as had it been written in another language. The main problem is
the fact that while the Java garbage collection mechanism is convenient, it
sometimes slows down program execution at random occations.

This is especially true when running simulations on the algorithms which
allocate and deallocate large amounts of memory. To decrease the number
of deallocations the algorithms attempt to reuse as many objects as possible.

Algorithm Timing. This is another, more specific, problem with the existing
Java version. The resolution of the Java time measurement function Sys-
tem.currentTimeMillis is insufficient. The reason is that the time resolution
is dependent on the Java Virtual Machine and/or the operating system. In
some cases the resolution of System.currentTimeMillis is as low as 50 mil-
liseconds (see [15]).

This means that the algorithm processing time measurement might be very
unreliable. On some systems all measured times below 50 milliseconds will
be truncated to 0, thus giving close to unusable results in some cases. This
problem will hopefully be remedied in the next version of Java (1.5), since
that version will introduce time measurement functions with resolution in
nanoseconds.

Simulated Broadcasting. The client-server argdecture does not currently use
true broadcasting or multicasting, but 1115‘@ uses a single socket connection
(unicast) to each user. This implies 1973t is not currently meaningful to
gather network traffic statistics to é for any type of analysis. This will
also reduce system and network @b’ormance if a large number of clients are
connected simultaneously. (b'

detail. The possibili a single signature per set of rekey messages is

LKH Algorithm Function ?‘ The current implementation of LKH lacks one
%lfg 0
currently not implexpghted. Instead all rekey messages are signed individu-

y-oriented rekeying it might therefore be desirable to com-
pletely disable the signing of rekey messages, to lessen the impact of this
flaw. This is done by selecting None as signature algorithm in the LKH
parameters. Since group-oriented rekeying only sends a single rekey message
(and thus only requires one signature), this flaw can be ignored for the cases
where this rekeying strategy is used.

4.4 Advantages

Some advantages of this system are described below:

39

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

4.4. ADVANTAGES

Algorithm Comparison. The possibility to execute simulations on different al-
gorithms in the same framework, and show the result in a common chart,
can be used to do performance comparisons of algorithms that are too differ-
ent to allow for easy theoretical comparisons (for example the CS algorithm
compared to LKH). This is the main advantage of this system.

Extension. The framework makes it easy to implement additional broadcast en-
cryption algorithms. Only a few classes have to be implemented and modified
when adding a new algorithm, see section 3.4.

Algorithm Support. The framework does not put much restrictions on the al-
gorithms so most types of algorithms can be implemented. Both stateless
and stateful algorithms can be added, as demonstrated by the currently im-
plemented algorithms.

Visualization. The graphical interface makes it possible to visualize the algo-
rithms in real-time to better understand how they work. An example of
this is the possibility to see how the subsets are structured in the Complete
Subtree and Subset Difference algorithms.

Client/Server Architecture. The client/server architecture used by the system
is very similar to a real broadcasting enviror@ﬂt; where data is actually
being sent over a network. This means tha&)@f simulation results should be
similar to a real-life scenario. <

Multiple Platform Support. Because \{e-system is written completely in Java
it can be executed on any platforepghat implements a Java Virtual Machine.

XN
’\\6

*

40

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

References

1]

Shimson Berkovits: How to broadcast a secret. Advances in Cryptology: EU-
ROCRYPT 91, pages 536-541. Springer-Verlag, 1992.

Amos Fiat, Moni Naor: Broadcast encryption. Advances in Cryptology:
CRYPTO’93, LNCS 773, pages 480-491. Springer-Verlag, 1994.

Dalit Naor, Moni Naor, Jeff Lotspiech: Revocation and Tracing Schemes for
Stateless Receivers. Advances in Cryptology - CRYPTO ’01, volume 2139 of
Lecture Notes in Computer Science, pages 41-62. Springer Verlag, 2001.

Dani Halevy, Adi Shamir: The LSD Broadcast Encryption Scheme, The Weiz-
mann Institute of Science, 2002. @

Chung Kei Wong, Mohamed Gouda, Sgﬂon S. Lam: Secure Group Com-
munications Using Key Graphs. Te @ﬁtal Report TR-97-23, Department of
Computer Sciences, The Universig Texas at Austin, 1997.

C. K. Wong and Simon S. I@?K@ystone: A group key management service.
Proceedings of the Intonn\(%nal Conference on Telecommunications, 2000.

X. Steve Li, Y. Richg
rekeying for secu,

World Wide V

(& Yang, Mohamed G. Gouda, and Simon S. Lam: Batch
oup communications. Proceedings of Tenth International
onference (WWW10), Hong Kong, China, May 2001.

Mattias Johansson: Practical Fvaluation of Revocation Schemes. Master’s
Thesis in Computer Science, TRITA-NA-E04058, Royal Institute of Technol-
ogy, Sweden, 2004.

Jeffrey Lotspiech, Stefan Nusser, Florian Pestoni: Broadcast Encryption’s
Bright Future. IEEE Computer vol. 35, pages 57-63, 2002.

E. W. Weisstein. “Steiner Tree”. MathWorld - A Wolfram Web Resource.
URL: http://mathworld.wolfram.com/SteinerTree.html

43

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com

Menu

Algorithm

Control

Statistics Client

www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

B.1. SERVER

B.1.1 Menu Bar

The menu bar controls the general functionality of the application: Changing
algorithm, setting algorithm parameters, storing and loading of user configurations
and executing simulations.

The Algorithm menu is used to change the current algorithm, setting the num-
ber of users, and changing algorithm parameters. The (x y) prefix, where x and y
are integers, in the parameters submenu are used when setting a parameter in a
batch file, see sections C.3.4 and C.3.5.

The User Configuration menu is used for generating random user configura-
tions, and for loading and storing the current configuration. This can be used for
commonly used configurations, to avoid having to set the configuration manually
every time it should be used.

The Simulation menu is used for executing simulations, see section B.3 for
information about the individual simulation types.

B.1.2 Algorithm Display

The next part of the user interface is the algorithm display, used by the algorithms
to present algorithm-specific information. Figure B.2 shows an example of a exist-
ing algorithm UI (in this case for the Subset Differeng@=lgorithm). FEach algorithm
can have a unique user interface, and we leave ouiyre details.

N

~Algorithim Display: Subset Difference

r Display Index
r Display User Index
r Display Cutline

I Display Cover

Save EPS |

Figure B.2: The user interface for the Subset Difference algorithm.

48

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

B.1. SERVER

B.1.3 Control Panel

Below the algorithm frame is the control panel (figure B.3). This contains general
algorithm controls that are applicable to most algorithms. This includes adding
and removing authorized users, and forcing the application to initialize or broad-
cast with the current algorithm state.

The Add and Remove buttons are used in conjunction with the Users text field
to the left of them, to add and remove users from the current privileged set. To
do this, enter a string describing what user(s) to add or remove in the form 75, -3,
8-12, 20-”, and click Add or Remove. Any number of combinations of these are
allowed, for example "1-5, 10-15, 20-25, 8, 97.

The Initialize button forces the current algorithm to re-initialize with the cur-
rent user configuration. This will rebuild the internal data of most algorithms.
This function can be used for testing purposes, but is normally not used. Any
client that connects to the server will automatically receive initialization data
without the user having to do this manually.

The Broadcast button will broadcast the string entered in the text field to
the right of it. The framework does this by calling the BroadcastEncryptionAlgo-
rithm.broadcast method.

Control Panel

’7Users:| Al | Remave | Algarithim: Initialize ||Brnadcast| IHeIIo wearlcl
()v

Figure B.3: Thc@&n‘trol panel.

B

B.1.4 Statistics Paa)

At the bottom of the ug
B.4. The statistics
simulations and alg

The ”arrow” buttons and the number list can be used to look on specific sim-
ulation outputs, and the Delete and Delete All is used to delete the current or all
existing statistics.

ihterface are the statistics and client panels, see figure
l is used for displaying the statistics generated by the
thms.

B.1.5 Client Panel

The client panel (figure B.4) displays the output of a client that is run locally
as a separate thread. This client can be disabled at will, for example when it is
preferred that the server has full access to the available processing power.

49

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

Simulation Cutput it Output (Client 1D: 9)
essage size: 204 (nin=144, nax=253) «|||/[r** comnecting to localhest/127.0.0.1...
egsages: §.505 (min=&, max=1Z) #%% hzzigned ID: 0
Privileged users: 23 #++ Allocating algorithm: Subset Difference
evoked users: 9 SD: Tree size: 32
Gimalation iterations: 100 sD: Secret size: 16
Simulation parameters: Pir)=0.3 3D: Decrypted successfully
Fimulation type: Randon Decrypted message: Hello world!
ser size: 32 hd
= 1 i =
Delete Delete Al ST -

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

Connection
Status: Connected
Connect Disconnect
Address: |localhost
Incoming Packets Client Messages
TYFE_ALGORITHM m Cannecting to localhostM27.0.0.1... -
TYPE_IMIT == Azsigned ID:0

TYPE_INIT ™= Allocating algorithm: Complete Subtree
TvPE_BROADCAST C5: Tree size: 22

CS: Secretsize: &
C5: Decrypted successfully
Cacrypted message: Hello world!

ol

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

& Chart

375

350

325

300

275

250

225

200

Cover size

178

150

128

100

75

&0

25

o 102 204 307 408 512 14 716 818 221 1024

Revoked users

|+Comp|ete Subtree —-#— Subset Difference

Axiz label Condition: Option:

- |a j [Logarithmic

Remove I Include y=0

Algarithim = * Save

X |Rev0ked users j |Alg0r'rthm

W |Cover size =

Cloze

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

C.2. BATCH FILE STRUCTURE

C.2 Batch File Structure

A batch file has the following structure:

e The first non-comment and non-blank line in a batch file has to be the word
beaf to identify the file as a batch file.

e The batch file can contain an unlimited amount of batch commands.

e Both single- and multi-line comments are allowed using Java-style comments,
namely // for single line and /* ... */ for multi line comments.

e Empty lines are allowed and ignored by the parser.

e Both upper- and lowercase characters are allowed (the parser treats all char-
acters as lowercase).

Many of the commands can take enumerations as parameters. An enumeration
works much like a Java for-loop, describing the start, stop and increment values
of the enumeration. The syntax for the enumerations are as follows (observe the
parenthesis):

(from X to Y add Z) O®

(from X to Y mult Z)

X Q\

Where X, Y and Z are numbers. Not%@lat a single value is valid input for an

enumeration. &

..&6
C.3 Batch Com

All available batch conmgsyhds are described below, in order of appearance in a
normal batch file. So™8 nhotes about the command arguments: string-parameters
accept any alphanumeric string, number only accepts a single value (no enumer-
ations), and enumeration accepts all types of enumerations (the syntax of an
enumeration is described in the previous section).

C.3.1 Dbeaf

This is the batch file identifier that must be on the first non-comment and non-
empty line in the batch file. If not, the file will not be recognized as a valid batch

file.

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

C.3. BATCH COMMAND SYNTAX

C.3.2 algorithm string

The algorithm command sets the current algorithm to use in the simulations.
Subsequent algorithm commands will override the previous algorithm commands,
and clear all previous parameter/parameters settings (see sections C.3.4 and
C.3.5).

Example: algorithm Subset Difference

C.3.3 users enumeration

This command defines the maximal number of users used in the following simula-
tions. Should be a power of two.

Example: users 1024 will set the maximum users to 1024. users (from 512
to 4096 mult 2) will iterate the user size from 512 to 4096 by multiplying the
size by two each iteration.

C.3.4 parameter number enumeration

The parameter command will set the parameter specified by the first argument
to the value of the second argument. For possible parameter values, see the Al-
gorithm/Parameters menu in the main applicatig» Subsequent parameter com-
mands will override the previous if they set thQphme parameter. Also note that
the algorithm command will clear all prevgoR¥ calls to parameter.

Example: parameter 0 3 will set pp@heter 0 to 3. parameter 1 (from O
to 2 add 1) will iterate parameter 1&1 0 to 2 in the following simulations.

C.3.5 parameters en@ration enumeration ... enumeration

A\

The parameters (observe I% 's’) command sets all algorithm parameters at once.
The number of argum Is the same as the number of possible parameters for
the current algorith ubsequent parameters will override the previous. Also
note that the algo™NThm command will clear all previous calls to parameters.

Example: Setting all parameters for an algorithm that has four parameters can
be done with parameters 1 0 (from O to 3 add 1) 3. This will set parameter
0 to 1, parameter 2 to 0, parameter 3 will iterate through the values 0-3 when
doing a simulation, and parameter 3 will be set to 3.

C.3.6 simulation

The simulation command sets the current simulation type with specified pa-
rameters. The parameters depends on the simulation type, as described below.

95

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

e www.FirstRanker.com www.FirstRanki%gm
LINKOPING UNIVERSITY = :
ELECTRONIC PRESS -

P& svenska

Detta dokument halls tillgangligt pa Internet — eller dess framtida ersattare —
under en langre tid fran publiceringsdatum under forutsattning att inga extra-
ordinara omstandigheter uppstar.

Tillgang till dokumentet innebér tillstand for var och en att lasa, ladda ner,
skriva ut enstaka kopior for enskilt bruk och att anvanda det oftérandrat for
ickekommersiell forskning och for undervisning. Overféring av upphovsratten
vid en senare tidpunkt kan inte upphava detta tillstand. All annan anvandning av
dokumentet kraver upphovsmannens medgivande. For att garantera &ktheten,
sdkerheten och tillgangligheten finns det ldsningar av teknisk och administrativ
art.

Upphovsmannens ideella rétt innefattar ratt att bli nAmnd som upphovsman i
den omfattning som god sed kraver vid anvandning av dokumentet pa ovan
beskrivna satt samt skydd mot att dokumentet andras eller presenteras i sadan
form eller i sadant sammanhang som ar krankande for upphovsmannens litterdra
eller konstnéarliga anseende eller egenart.

For ytterligare information om Linkdping University Electronic Press se
forlagets hemsida http://www.ep.liu.se/

In English

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time-from the date of publication barring
exceptional circumstances.

The online availability of the-document implies a permanent permission for
anyone to read, to download; to print out single copies for your own use and to
use it unchanged for any.non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are-conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be
mentioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linkdping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its WWW home page: http://iwww.ep.liu.se/

© Tobias Hesselius, Tommy Savela

www.FirstRanker.com

