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Abstract. The paper describes an interactive musical system that uti-
lizes a genetic algorithm in an effort to create inspiring collaborations be-
tween human musicians and an improvisatory robotic xylophone player.
The robot is designed to respond to human input in an acoustic and
visual manner, evolving a human-generated phrase population based on
a similarity driven fitness function in real time. The robot listens to
MIDI and audio input from human players and generates melodic re-
sponses that are informed by the analyzed input as well as by internal-
ized knowledge of contextually relevant material. The paper describes
the motivation for the project, the hardware and software design, two
performances that were conducted with the system, and a number of
directions for future work.

Keywords: genetic algorithm, human-robot-interaction, robotic musi-
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1 Introduction and Related Work

Real-time collaboration between human and robotic musicians can capitalize
on the combination of their. unique strengths to produce new and compelling
music. In order to create intuitive and inspiring human-robot collaborations, we
have developed a robot that can analyze music based on computational models
of human percepts and use genetic algorithms to create musical responses that
are not likely totbe generated by humans. The two-armed xylophone playing
robot is designed to listen like a human and improvise like a machine, bringing
together machine musicianship with the capacity to produce musical responses
on a traditional acoustic instrument.

Current research directions in musical robotics focus on sound production and
rarely address perceptual aspects of musicianship, such as listening, analysis, im-
provisation, or group interaction. Such automated musical devices include both
Robotic Musical Instruments — mechanical constructions that can be played by
live musicians or triggered by pre-recorded sequences — and Anthropomorphic
Musical Robots — humanoid robots that attempt to imitate the action of human
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musicians (see a historical review of the field in [4]). Only a few attempts have
been made to develop perceptual robots that are controlled by neural networks
or other autonomous methods . Some successful examples for such interactive
musical systems are Cypher [9], Voyager [6], and the Continuator [8]. These sys-
tems analyze musical input and provide algorithmic responses by generating and
controlling a variety of parameters such as melody, harmony, rhythm, timbre,
and orchestration. These interactive systems, however, remain in the software
domain and are not designed to generate acoustic sound.

As part of our effort to develop a musically discerning robot, we have ex-
plored models of melodic similarity using dynamic time warping. Notable related
work in this field is the work by Smith at al. [11], which utilized a dynamic-
programming approach to retrieve similar tunes from a folk song database.
The design of the software controlling our robot includes a novel approach to
the use of improvisatory genetic algorithms. Related work in this area includes
GenJam [2], an interactive computer system that improvises over a set of jazz
tunes using genetic algorithms. GenJam'’s initial phrase population is generated
stochastically, with some musical constraints. Its fitness function is based on
human aesthetics, where for each generation the user determines which phrases
remain in the population. Other musical systems that utilize human-based fit-
ness functions have been developed by Moroni [7], who uses a real-time fitness
criterion, and Tokui [12], who uses human feedback to train a neural network-
based fitness function. The Talking Drum project [3], on the other hand, uses a
computational fitness function based on the difference between a given member
of the population and a target pattern. In an effort to create more musically
relevant responses, our system is based on a human-generated initial population
of phrases and a similarity-based fitness function; as described in detail below.

2 The Robotic Percussionist

In previous work, we developed an.interactive robotic percussionist named Haile
[13]. The robot was designed to.respond to human drummers by recognizing
low-level musical features.such~as note onset, pitch, and amplitude as well as
higher-level percepts such”as rhythmic stability and similarity. Mechanically,
Haile controls two robotic arms; the right arm is designed to play fast notes, while
the left arm is designed to produce larger and more visible motions, which can
create louder sounds in comparison to the right arm. Unlike robotic drumming
systems that allow hits at only a few discrete locations, Haile’s arms can move
continuously across the striking surface, which can allow for pitch generation
using a mallet instrument instead of a drum. For the current project, Haile was
adapted to play a one-octave xylophone. The different mechanisms in each arm,
driven either by a solenoid or a linear-motor, led to a unique timbral outcome.
Since the range of the arms covers only one octave, Haile’s responses are filtered
by pitch class.
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Fig. 1. Haile’s two robotic arms cover a range of one octave (middle G to treble G.)
The left arm is capable of playing five notes, the right arm seven.

3 Genetic Algorithm

Our goal in designing the interactive genetic algorithm (GA) was to allow the
robot to respond to human input in a manner that is both relevant and novel.
The algorithmic response is based on the observed input as well as on internalized
knowledge of contextually relevant material. The ‘algorithm fragments MIDI and
audio input into short phrases. It then attempts to find a “fit” response by
evolving a pre-stored, human-generated population of phrases using a variety
of mutation and crossover functions over-a variable number of generations. At
each generation, the evolved phrases are evaluated by a fitness function that
measures similarity to the input phrase, and the least fit phrases in the database
are replaced by members of the'next generation. A unique aspect in this design
is the use of a pre-recorded.population of phrases that evolves over a limited
number of generations. This allows musical elements from the original phrases
to mix with elements of the real-time input to create unique, hybrid, and at times
unpredictable, responses for each given input melody. By running the algorithm
in real-time, the responses are generated in a musically appropriate time-frame.

3.1 Base Population

Approximately forty melodic excerpts of variable lengths and styles were used
as an initial population for the genetic algorithm. They were recorded by a jazz
pianist improvising in a similar musical context to that in which the robot was
intended to perform. Having a distinctly “human” flavor, these phrases provided
the GA with a rich pool of rhythmic and melodic “genes” from which to build
its own melodies. This is notably different from most standard approaches, in
which the starting population is generated stochastically.

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

354 G. Weinberg et al.

3.2 Fitness Function

A similarity measure between the observed input and the melodic content of each
generation of the GA was used as a fitness function. The goal was not to converge
to an “ideal” response by maximizing the fitness metric (which could have led
to an exact imitation of the input melody), but rather to use it as a guide for
the algorithmic creation of melodies. By varying the number of generations and
the type and frequency of mutations, certain characteristics of both the observed
melody and some subset of the base population could be preserved in the output.

Dynamic Time Warping (DTW) was used to calculate the similarity measure
between the observed and generated melodies. A well-known technique originally
used in speech recognition applications, DTW provides a method for analyzing
similarity, either through time shifting or stretching, of two given segments whose
internal timing may vary. While its use in pattern recognition and classification
has largely been supplanted by newer techniques such as Hidden Markov Models,
DTW was particularly well suited to the needs of this project, specifically the
task of comparing two given melodies of potentially unequal lengths without ref-
erencing an underlying model. We used a method similar to the one proposed by
Smith [11], deviating from the time-frame-based model to represent melodies as
a sequence of feature vectors corresponding to the notes. Our dissimilarity mea-
sure, much like Smith’s “edit distance”, assigns a cost to deletion and insertion
of notes, as well as to the local distance between the features of corresponding
pairs. The smallest distance over all possible temporal alignments is then chosen,
and the inverse (the “similarity” of the melodies) i§ used as the fitness value.
The local distances are computed using a weighted sum of four differences: ab-
solute pitch, pitch class, log-duration, and melodic attraction. The individual
weights are configurable, each with a distinctive effect upon the musical qual-
ity of the output. For example, higher, weights on the log-duration difference
lead to more precise rhythmic matching; while weighting the pitch-based differ-
ences lead to outputs that more clesely'mirror the melodic contour of the input.
Melodic attraction between pitches is calculated based on the Generative The-
ory of Tonal Music model [5].(Theé relative balance between the local distances
and the temporal deviation.cost has a pronounced effect — a lower cost for
note insertion/deletion leads to a highly variant output. A handful of effective
configurations were derived through manual optimization.

The computational'demands of a real-time context required significant opti-
mization of the DTW, despite the relatively small length of the melodies (typi-
cally between two and thirty notes). We implemented a standard path constraint
on the search through possible time alignments in which consecutive insertions
or deletions are not allowed. This cut computation time by approximately one
half but prohibited comparison of melodies whose lengths differ by more than a
factor of two. These situations were treated as special cases and were assigned
an appropriately low fitness value. Additionally, since the computation time is
proportional to the length of the melody squared, a decision was made to break
longer input melodies into smaller segments to increase the efficiency and remove
the possibility of an audible time lag.
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3.3 Mutation and Crossover

With each generation, a configurable percentage of the phrase population is
chosen for mating. This “parent” selection is made stochastically according to a
probability distribution calculated from each phrase’s fitness value, so that more
fit phrases are more likely to breed. The mating functions range from simple
mathematical operations to more sophisticated musical functions. For instance,
a single crossover function is implemented by randomly defining a common di-
viding point on two parent phrases and concatenating the first section from one
parent with the second section from the other to create the child phrase. This
mating function, while common in genetic algorithms, does not use structural
information of the data and often leads to non-musical intermediate populations
of phrases. We also implemented musical mating functions that were designed
to lead to musically relevant outcomes without requiring that the population
converge to a maximized fitness value. An example of such a function is the
pitch-rhythm crossover, in which the pitches of one parent are imposed on the
rhythm of the other parent. Because the parent phrases are often of different
lengths, the new melody follows the pitch contour of the first parent, and its
pitches are linearly interpolated to fit the rhythm of the second parent.
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Fig. 2. Mating of two prototypical phrases using the pitch-rhythm crossover function.
Child 1 has the pitch contour of Parent-A and rhythm pattern of Parent B while Child
2 has the rhythm of Parent A and the pitch contour of Parent B.

Additionally, an adjustable percentage of each generation is mutated accord-
ing to a set of functions-that range in musical complexity. For instance, a simple
random mutation function adds or subtracts random numbers of semitones to
the pitches withinia phrase and random lengths of time to the durations of
the notes. While this mutation seems to add a necessary amount of random-
ness that allows a population to converge toward the reference melody over
many generations, it degrades the musicality of the intermediate populations.
Other functions were implemented that would stochastically mutate a melodic
phrase in a musical fashion, so that the outcome is recognizably derivative of
the original. The density mutation function, for example, alters the density of
a phrase by adding or removing notes, so that the resulting phrase follows the
original pitch contour with a different number of notes. Other simple musical
mutations include inversion, retrograde, and transposition operations. In total,
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seven mutation functions and two crossover functions were available for use with
the algorithm, any combination of which could be manually or algorithmically
applied in real-time.

4 Interaction Design

In order for Haile to improvise in a live setting, we developed a number of human-
machine interaction schemes. Much like a human musician, Haile must decide
when and for how long to play, to which other player(s) to listen, and what
notes and phrases to play in a given musical context. This creates the need for
a set of routines to handle the capture, analysis, transformation, and generation
of musical material in response to the actions of one or more musical partners.
While much of the interaction we implemented centers on a call-and-response
format, we have attempted to dramatically expand this paradigm by allowing
the robot to interrupt, ignore, or introduce new material. It is our hope that this
creates an improvisatory musical dynamic which can be surprising and exciting.

4.1 Input

The system receives and analyzes both MIDI and audio information. Input
from a digital piano is collected using MIDI while the Max/MSP object pitch”
(http://web.media.mit.edu/~tristan/maxmsp.html) is used for pitch detec-
tion of melodic audio from acoustic instruments. The incoming audio is filtered
and compressed slightly in order to improve results.

4.2 Simple Interactions

In an effort to establish Haile’s listening abilities in live performance settings,
simple interaction schemes were developed that do not use the genetic algorithm.
One such scheme is direct repetitionof human input, in which Haile duplicates
any note that is received from MIDI input, creating a kind of roll which follows
the human player. In another“interaction scheme, the robot records and plays
back complete phrases of‘musical material. A predefined chord sequence causes
Haile to start listening, torthe human performer, and a similar cue causes it
to play back the recorded melody. A simple but rather effective extension of
this approach utilizes-a mechanism that stochastically adds notes to the melody
while preserving the melodic contour, similarly to the density mutation function
described in Sect. 3.3.

4.3 Genetic Algorithm Driven Improvisation

The interaction scheme used in conjunction with the genetic algorithm requires
more flexibility than those described above, in order to allow for free-form im-
provisation. The primary tool used to achieve this goal is an adaptive call-and-
response mechanism which tracks the mean and variance of inter-onset times in
the input. It uses these to distinguish between pauses that should be considered
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part of a phrase and those that denote its end. The system quickly learns the
typical inter-onset times expected at any given moment. Then the likelihood
that a given pause is part of a phrase can be estimated; if the pause continues
long enough, the system interprets that silence as the termination of the phrase.

If the player to whom Haile is listening pauses sufficiently long, the phrase
detection algorithm triggers the genetic algorithm. With the optimizations de-
scribed in Sect. 3.2, the genetic algorithm’s output can be generated in a fraction
of a second (typically about 0.1 sec.) and thus be played back almost immedi-
ately, creating a lively and responsive dynamic. We have attempted to break the
regularity of this pattern of interaction by introducing some unpredictability.
Specifically, we allow for the robot to occasionally interrupt or ignore the other
musicians, reintroduce material from a database of genetically modified phrases
generated earlier in the same performance, and imitate a melody verbatim to
create a canon of sorts.

In the initial phase of the project, a human operator was responsible for con-
trolling a number of higher-level decisions and parameters during performance.
For example, switching between various interaction modes, the choice of whether
to listen to the audio or MIDI input, and the selection of mutation functions were
all accomplished manually from within a Max/MSP patch. In order to facilitate
autonomous interaction, we developed an algorithm that would make these de-
cisions based on the evolving context of the music, thus allowing Haile to react
to musicians in a performance setting without the need for any explicit human
control. Haile’s autonomous module thus involves switching between four dif-
ferent playback modes. “Call-and-response” is described above and is the core.
“Independent playback” mode is briefly mentioned above; in it, Haile intro-
duces a previously generated melody, possibly interrupting the other players. In
“Canon” mode, instead of playing its own material, the robot echoes back the
other player’s phrase at some delay. Finally,'“Solo” mode is triggered by a lack
of input from the other musicians, and\causes Haile to continue playing back
previously generated phrases from.its database until both other players resume
playing and interrupt the robotic.solo.

Independently of these playback modes, the robot periodically changes the
source to which it listens; and changes the various parameters of the genetic
algorithm (mutation and crossover types, number of generations, amount of mu-
tation, etc.) over time. In the end, the human performers do not know a priori
which of them is driving Haile’s improvisation or exactly how Haile will respond.
We feel this represents a workable model of the structure and dynamic of inter-
actions that can be seen in human-to-human musical improvisation.

5 Performances

Two compositions were written for the system and performed in three concerts.
In the first piece, titled “Svobod,” a piano and a saxophone player freely im-
provised with the robot. The first version of “Svobod” used a semi-autonomous
system and a human operator (see video excerpts — http://www.coa.gatech.
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edu/~gil/Svobod.mov). In its second version, performed at ICMC 2007, the full
complement of autonomous behaviors described in Sect. 4.3 was implemented.
The other piece, titled “iltur for Haile,” also utilized the fully autonomous sys-
tem, and involved a more defined and tonal musical structure utilizing genetically
driven as well as non-genetically driven interaction schemes, as the robot per-
formed with a full jazz quartet (see video excerpts http://www.coa.gatech.
edu/~gil/iltur4Haile.mov).

Fig. 3. Human players interact with Haile as it improvises based on input from saxo-
phone and piano in “Svobod” (performed August 31, 2007, at ICMC in Copenhagen,
Denmark)

6 Summary and Future Work

We have developed an interactive musical system that utilizes a genetic algo-
rithm in an effort to create’unique musical collaborations between humans and
machines. Novel elements-in the implementation of the project include using a
human-generated phrase population, running the genetic algorithm in real-time,
and utilizing a limited number of evolutionary generations in an effort to cre-
ate hybrid musical results, all realized by a musical robot that responds in an
acoustic and visual manner. Informed by these performances, we are currently
exploring a number of future development directions such as extending the mu-
sical register and acoustic richness of the robot, experimenting with different
genetic algorithm designs to improve the quality of musical responses, and con-
ducting user studies to evaluate humans’ response to the algorithmic output and
the interaction schemes.
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