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Abstract

Distributed data mining is a relatively new area within computer science that is steadily growing,
emerging from the demands of being able to gather and process various distributed data by
utilising clusters. This report presents the properties of graph structured data and what paradigms
to use for efficiently processing the data type, based on comprehensive theoretical studies
applied on practical tests performed on a single node cluster. The results in the study showcase
the various performance aspects of processing graph data, using different open source paradigm
frameworks and amount of shards used on input. A conclusion to be drawn from this study is that
there are no real performance advantages to using distributed data mining paradigms specifically

developed for graph data on single machines.
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Sammandrag

Att utvinna distribuerad data dr ett relativt nytt omrdde inom datatekniken och stindigt vdxande,
framkommen ur kraven pa att kunna samla in och bearbeta olika distribuerad data genom att
anviandning av kluster. I denna rapport presenteras egenskaper hos data med grafstruktur och
vilka paradigmer som bor anvédndas for att effektivt behandla den datastrukturen, baserat pa
omfattande teoretiska studier tillimpade péd praktiska tester som utfors pa kluster med en nod.
Resultaten erhdllna i studien visar de olika prestanda erhdllna frén bearbetning av grafdata
genom att nyttja paradigmer med oppen kdllkod och olika antal berdkningsintervaller. En slutsats
som kan dras av denna studie ir att det inte finns nagra praktiska fordelar med att anvinda
paradigmer avsedda for distribuerad grafdata pa enskilda berdkningsenheter, gillande

tidsprestanda.
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Chapter 1 - Introduction

Significant advances in computing and communication have been made over the last few years.
Extensive amounts of raw data, consisting of various information, are generated daily. In 2008,
the company Google alone processed several petabytes every day (Dean & Ghemawat, 2008).
Many organisations have realised the value of collecting and analysing this data, also known as
mining. The term data mining can be described as: “the process of secondary analysis of large
databases aimed at finding unsuspected relationships which are of interest or value to the
database owners” (Hand, 1998). Granted, much of this raw data is not obviously interesting nor
useful at first sight, but valuable information can be extracted and furthermore, conclusions can
be drawn from it and its related statistics when analysed. This presents great opportunities for
improvement within all kinds of digitally implemented platforms, from user experience to

optimisation of various aspects in many systems and products.

The importance of data mining has steadily increased over the years, as social and corporate
platforms have moved the majority of their platforms to digitally implemented solutions, such as
social platforms, softwares and individual websites on the internet. Important information is now
stored into databases, thus making it easier to maintain; the human effort is effectively translated
into automatic operations conducted by the computational power in machines. Completely new
possibilities emerged from this information movement, resulting in a steadily increasing flow of
data, which potentially hides valuable information on how to further evolve and optimise various
systems. This analytic application of digital processing of gathered data came to be recognised as
the formal term Business Intelligence. This widely used term was founded in 1989 by an analyst
at the Gartner Group, Howard Dresner, as an umbrella term to describe: “concepts and methods
to improve business decision making by using fact-based support systems” (Power, 2007). It
became clear that Business Intelligence was of high importance and widely put into use as a

strategic technology within corporate organisations (Watson & Wixom, 2007).
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As this raw data is further on processed into valuable information, there are many areas of
interest to take into account, fully dependant on what kind of data was gathered in the first place.
For instance, data mining is essential for development within the machine learning and pattern
recognition area. Patterns that are extracted from raw data during the mining process are utilised
in different pattern discovery algorithms. Important categories emerging from this pattern
discovery technique are genetic algorithms and neural networks, among many other areas (Bose
& Mahapatra, 2001). This way of acquiring and mining data has also stimulated the
implementation of huge databases that can be used as a basis when performing major statistical
analyses. This resource is of high importance when conducting statistical surveys within the
fields of chemistry, medicine, biology, particle physics, banking and social fields, among several

others (Hand, 1998).

1.1 Problem Statement
Taking the background of data mining into account and the implementation of different existing
distributed data mining paradigms running primarily on large clusters, the problem will be

formulated as:
e Are there any advantages to using a graph-specific distributed data mining paradigm,

over a regular distributed data mining paradigm, for the PageRank algorithm in single

node clusters applied on graph data?

2

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

1.2 Purpose

It is somewhat relevant for the distributed data mining field of research to conduct a
comprehensive study on a cluster of much smaller scale than usual—in this case on a single
machine—in order to further on be able to conclude the main performance advantages, if any, of
paradigms that specifically deal with graph structured data. Several available scientific papers
and reports within the area of distributed data mining have conducted experiments and research
on performance aspects of many different paradigms on large clusters, in many cases containing
several thousands of machines. According to the research, an evaluation of performance aspects

between different paradigms running on clusters of small scale is yet to be conducted.

There are many open source and easily implemented frameworks available today for smaller
scale operations and businesses, which enhances the purpose of performance evaluations on
clusters of different scales, from small to large ones. More specifically, this raises the need of the
comparison between paradigms that are developed to deal with different kinds of data structures,
ran on small scale clusters. When it comes to processing data on clusters of this small scale, the

performance differences might vary compared to performances evaluated on large scale clusters.

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

Chapter 2 - Background

Centralised warehouses are commonly used to store and process data. However, because of the
huge amounts related to data mining nowadays this has become fairly unrealistic (Tsoumakas &
Vlahavas, 2009). The raw data is already distributed among many different sources, and
transferring everything to a central location takes time. Processing this data centrally is also
incredibly time consuming, as it can be processed more efficiently if smaller packages of

information are sent to different machines to be processed separately.

Dean & Ghemawat (2008) explains that Google employees used many different special-purpose
implementations to process the large amounts of data. Even though they were rather
straightforward, the input was often so large that computations would have to be distributed over
many different machines within clusters, in order to finish within a reasonable time frame. This

was a very complex way to deal with the raw data.

2.1 MapReduce

Google designed a new paradigm to deal with the complexity of mining data, called MapReduce.
This focuses on the main objective of gathering and processing data distributed across several
different machines and assign processes to clusters in a much more efficient way. The key
efficiency lie in the way of handling all the involved resources, mapping, and the fault tolerance
taken care of. This is also a unified model that works independently from the system scales or
traits (Yang & Sun, 2011). The paradigm is mainly founded on inspiration taken from the
programming language Lisp, which includes the functions map and reduce. This was the result of
a realisation made by Google, as many process computations applied map operations on the

input data (Dean & Ghemawat, 2008).

4
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The map and reduce functions are specified by the user. The number of tasks is set so that the
input files are split into 16-64 megabyte (MB) pieces. There are M map tasks and R reduce tasks
and commonly M > R. After the input has been split up into manageable chunks, copies of the
program are started on a cluster of machines. One of these copies is the master, which assigns all
the work for the rest, the workers. The worker parses key/value pairs (fig. 2) from the input and
passes it to the map function. The output of the map function will consist of intermediate

key/value pairs to be processed further on.

map(String key, String value):
for each word w in value:
EmitIntermediate(w, “1”);

www.FirstRanker.com
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The locations for these intermediate pairs are passed to the master which forwards them to the
workers that are assigned a reduce task (fig. 3). The data is sorted by the intermediate keys in
order to group all occurrences of the same key together. Each unique key and its associated set of
values is sent to the reduce function. The output from the reduce function is appended to a file
related to the current task. This will result in R different output files. It is not needed to combine
these files since they can be read by either using MapReduce or another application that can read
input distributed in multiple files. The output of the reduce function is most commonly one

single value set, or zero if no reduction was possible to compute.

reduce(String key, Iterator values):
int result = 0;
for each v in values:
result += parselnt(v);
Emit (AsString(result));

Thanks to the simplified focus of the MapReduce paradigm, it can be implemented swiftly on
any distributed data system, in the range of small-scale businesses to large-scale corporate
businesses. The main design aspect of MapReduce was to implement a dynamic backbone for
distributed data mining, with a great fault tolerance while hiding all the messy details, in order to
allow its users to focus on the more specific, simple computations. Hence, MapReduce makes it
easier and quicker to parse distributed data since the framework takes care of the parallelisation

and distribution.

There are some security aspects already implemented from the start in the MapReduce
framework. A task, which is a part of a job submitted by a user, can only be ran through the same

user, verified by assigned permissions to that user and the user’s identity. Only the user can

6
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terminate the job processes submitted. Another security policy implemented is the possibility of

restricting users when it comes to job submission queues (O’Malley et al., 2009).

Furthermore, to supply the MapReduce paradigm with more solutions in order to improve its
security level Airavat was introduced. Airavat is a system with the main purpose of enabling the
processing and execution of both trusted and untrusted computations on MapReduce
frameworks. Airavat also enforces privacy policies, provided by the data source providers. To
achieve this desired level of security, Airavat divides the computation process of MapReduce
into two distinct sections, that differ in the aspect of security levels. The first section involves the
mapped code, which is considered to be untrusted. The second and last section involves the
reducer code, which is seen upon as trusted code. Airavat provides trusted reducers, including
the functions SUM, COUNT, and THRESHOLD, which are sufficient for many reduce operations

carried out in the distributed data mining industry (Roy et al., 2010).

2.2 Hadoop

One commonly known framework paradigm is Hadoop, an implementation of MapReduce
written in Java, which became popular thanks to its open source manner. Hadoop made
MapReduce easy to access for businesses of any scale that are interested in maintaining and
mining their distributed database sources. The key for this is to process large-scale data sets

across several clusters while using incomplex programming entities.

The Hadoop framework has two main parts that can be distinguished from each other; first and
foremost it consists of the processing framework, which carries out the distributed processing on
clusters of any scale. Secondly, Hadoop is carried by a separate file system which holds all the
data in a distributed manner. This file system goes under the name Hadoop Distributed File
System (HDF'S). The main purpose of this separate file system is to store all the desired data, for
efficient access later on once the data is to be processed or analysed. As a means of maintaining

the easiness of Hadoop, the HDFS file system is optional to use.

7
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2.3 Graph Mining

When comparing paradigms it is of interest to distinguish them based on what kind of distributed
data will be mined. When it comes to mining distributed data that is specifically structured as a
graph, there are some known and attributed graph aspects of the mining process that will affect
the overall performance to a certain extent. It is of high interest to constantly evaluate those
aspects, as a way of making it possible to optimise the underlying algorithms that are developed

solely for the graph mining tasks.

2.3.1 Graph Partitioning

To be able to efficiently mine graphs in general, it is of high importance to maintain the graphs
partitioned, which would involve breaking the primary graph into subgraphs of equal sizes. A
poorly partitioned graph (or not partitioned at all) would require significantly more processing
and analysing before and during the mining process, as for instance the amount of edges that
cross numerous partitions would require more communication to be carried out between the

machines (Zeng et al., 2012).

According to Salihoglu & Widom (2013) a well thought out graph partitioning algorithm will
also reduce the input and output data transferred through the network, in form of messages,
instructions, etc. This is mainly the outcome when localising edges within the workers instead of

just partitioning them randomly.

Zeng et al. (2012) conducted a performance research which applies on the performance of
parallel graph partitioning when taking the graph partitioning process into account. They
discovered a new algorithm which can process parallel graphs in order to make a k-way balance
partitioning on graphs of larger scale. The algorithm was evaluated while performing on
real-world clusters, containing graph datasets with as much as roughly 42 million vertices, and
was compared with an already existing hashing method of graph partitioning. The algorithm
implemented for the study outperformed the hashing counterpart, leaving the hashing algorithm

approximately three times slower, after finishing the partitioning tests carried out.

8
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2.3.2 Network Performance

The networking performance of a system mining distributed data has a major role in determining
the performance outcome of the mining process. It involves the sending and acquiring of
information and message packets between worker units in the system. Salihoglu & Widom
(2013) have conducted a network I/O (Input/Output) evaluation, which specifically targets the
efficiency of network behaviour for different paradigms when mining graphs. According to their
study, the variance between different paradigms is large when evaluating the size of the network
I/O exchange. Four different graph partitioning schemes were evaluated during the partitioning
process. The size difference between the fastest and the slowest partitioner according to their
study was 7.9, measured in amount of gigabytes (GB) used for network I/O. The fastest scheme
algorithm is an implementation of METIS, which is a software for dividing graphs into smaller

partitions defined by the user. METIS is open for anyone to utilise.

2.3.3 Graph State

The downside to using MapReduce for processing graphs is that—because of how the map and
reduce functions work—it has no way of keeping the state of the graph during processing. The
machines would therefore have to pass around the part of the graph corresponding to the data
being processed. This means a substantial amount of in-out processing and bandwidth would be

spent on just passing the graph around between machines.

The downside of frameworks that implement distributed graph mining, such as Pregel which is
discussed below, is that they handle stragglers, machines that does not respond to pings, worse.
If one machine fails in MapReduce it just restarts the task. In Pregel, if workers fail, the current
state of the partitions assigned to these workers is lost. That state has to be reloaded from a
checkpoint, which if unlucky, might be several supersteps back, requiring more than just one

worker to recompute already finished work.

9
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2.4 Pregel

Graph algorithms commonly suffer from poor locality, and distribution over many machines
increases the probability of single-point failure. Single-point failure means that the master fails,
which will cause the entire program to fail. When mining graphs in MapReduce they need to be
written as a series of chained MapReduce invocations. The entire graph needs to be passed
between each stage meaning costly communication. This means usability issues and suboptimal
performance when dealing with large graphs. To deal with graphs more efficiently, the paradigm

Pregel was developed (Malewicz et al., 2010).

Pregel keeps the communication cost low by only sending messages instructing machines how to
manipulate the nodes of the graph, keeping it continually updated during runtime. Like
MapReduce, Pregel uses a master and a group of workers. It takes a graph as input and at each
vertex, the users computation is run. To communicate between vertices, a series of iterations,
called supersteps, are used. Each vertex can change its own state, or that of its outgoing edges,
read messages from the previous superstep and send new messages in the next superstep. It can
also mutate the graphs topology if needed. This vertex-centric model makes it more efficient
than MapReduce since the state of the graph is kept on the machine that performs the
computation instead of being sent between each stage. The synchronicity also ensures that Pregel

programs are inherently free of deadlocks and data races common in asynchronous systems.

The computation stops when all vertices are simultaneously in a state called vote to halt. This
means that it has no more messages to send and is inactive. It can be reactivated by a message,
meaning it has received a new task. The output is often a graph isomorphic to the input, although
not necessarily since vertices and edges can be added or deleted during computation (Malewicz

et al., 2010).

10
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2.5 GraphChi

Like Pregel, GraphChi was built with graph processing in mind. Not only that, but graph
processing on single computers. This differs greatly from other graph processing systems, which
use a distributed approach on clusters of machines. Distributed systems means their users will
have to manage clusters, fault tolerance and unpredictable performance. In addition to this, the
user have to partition the graph across the clusters’ nodes and find efficient graph cuts that

minimises communication between the nodes, which is known to be a difficult task.

Like with Pregel, the vertex-centric model is used. Messages are passed between vertices, along
edges, and the values of vertices and edges are computed and changed. Advanced graph
computing, with billions of edges, would normally require expensive components if it was to be
carried out in the memory of a single computer. Another solution was to use persistent storage as
memory extension. This usually means poor performance, but by using a novel method called
Parallel Sliding Windows (PSW) it could be improved. While Pregel is synchronous, PSW, and
therefore GraphChi, is asynchronous by nature. Asynchronicity has been shown to be more
efficient than the synchronous model, even if it is argued that Pregels performance could be

competitive with that of asynchronous systems.

PSW processes graphs in three stages. First, it loads a subgraph from disk. It then updates
vertices and edges of this subgraph and finally writes the updated values to disk. The vertices are
divided into a number of disjoint infervals and shards contain the edges. For each interval a
shard is associated, called the memory-shard. The other shards are called sliding shards in that
interval. A subgraph is constructed one interval at a time, where the in-edges for the vertices in
this interval are read from the memory-shard and the out-edges from the sliding shards. A
sliding window can be visualised over the intervals associated edges in each shard (Kyrola et. al.,

2012).

11
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Chapter 3 - Method

This study will be based on several different sources of information, to be able to provide with

relevant and comprehensive results within the area of research.

3.1 Literature Study

To be able to conduct a meaningful and unique research on this kind of problem, a more
theoretical approach is appropriate in order to implement a wide theoretical backbone, which will
advance the knowledge within this area of studies. This includes the knowledge of already
available studies and what results they brought forward to the area of business intelligence. It is
of high importance to examine and evaluate many different papers and reports published on

electronic sources, as they contain many relevant tests and related information to evaluate.

3.2 Test Study Specifications

As a natural outcome of the comprehensive research carried out in the literature study, some
relevant paradigm frameworks for small scale clusters, available as an open source solution for
personal computers, are chosen for further evaluation on a small scale cluster consisting of a
single machine. The main foundation for the research as a whole is to be generated by
complementing this study with convincing and interesting results, performed on a single personal

computer.

Each is performed individually, with no other software running simultaneously for maximum
performance output. The computer machine is also connected to a power supply, maximising the

performance of the machine.

12
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3.2.1 Test Machine

The tests are applied on a single machine, computing all the necessary steps during the study.
The machine consists of an Apple Macintosh Personal Computer (PC) laptop running the latest
version of the operative system OS X “Yosemite” (version 10.10.2). The hardware specifications

of the computer utilised during the tests are following:

e Processor: Intel Core 15, 2.4 GHz clock frequency

e Memory: 8 GB RAM, DDR3 1600 MHz clock frequency
e Graphics: Intel Iris 1536 MB VRAM

e Hard Disk Drive (HDD): 256 GB SSD

e QOperative System: OS X Yosemite (v. 10.10.2)

3.2.2 Test Paradigm Frameworks

The tests are carried out with two different paradigm frameworks available for free download.
The first paradigm used for testing is a native version of Hadoop for OS X, installed locally on
the hard drive. Hadoop is an open source software implemented in Java, licensed under the
common Apache 2.0 license (Apache Hadoop, 2015). Hadoop can run tests through a terminal
window and requires no other user interface. All processes currently running on the Hadoop
system can be fully controlled through a local website portal. Hadoop is chosen as one of the test
paradigms for the purpose of simplicity and the utilisation area; Hadoop is developed for mining

any kind of distributed data, and does not specify any preferred data structure to be mined.

The other paradigm used in this test is the GraphChi framework, also available for free
download. GraphChi is open source and licensed under the common Apache license, version 2.0.
GraphChi is also implemented in Java and downloaded as an Eclipse project through Github. All
the source code is fully available to use and configure. The GraphChi paradigm is developed for
mining distributed graphs on a small cluster consisting of a single machine, making it very

suitable for the scope of the study and as a paradigm to compare with Hadoop.

13
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3.2.3 PageRank

PageRank is an algorithm used by Google to rank the importance of websites. The importance is
determined by the likelihood for a person, who is randomly clicking links, to end up on a certain
site. All sites have equal importance at the start of the computation. A sites importance value is
evenly distributed over all of its outgoing links. This changes the importance of sites continually
during computation. Finally, the sites will have different importance and a link from a site with

high ranking and few links is worth more than a link from a less important site with more links.

The PageRank algorithm used for the specific tests in this study is available as an open source
distribution, made available in the GraphChi framework explained in section 3.2.2 of this report.
Same PageRank algorithm was exported as a JAR (Java Archive) file, and used as the algorithm

for the Hadoop framework used during the tests (see section 3.2.2).

3.2.4 Input Data
The test applies the PageRank algorithm on directed and undirected graphs stored in text (txt)

files. All graphs are open to the public and free to download in compressed (gzip) format from
Stanford University’s public dataset collection. The following sub chapters explains the input

graphs more in-depth with details.

3.2.4.1 Facebook

The Facebook dataset graph describes the structures and connections based on Facebook users’
‘friend lists,” collected during a survey. All the survey participants have been anonymised in
terms of internal Facebook IDs and other personal information, such as political beliefs etc. The

Facebook graph is undirected.

3.2.4.2 YouTube
The YouTube dataset graph consists of a social network where communities can be found and
connected to each other. This undirected graph consists of the largest community networks, with

the largest connected component on the social network.

14
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3.2.4.3 Amazon
Amazon’s dataset graph was created by crawling the Amazon website and gathering data based
on the “Customers Who Bought This Item Also Bought”-feature. The network is an undirected

graph based on the largest connected component.

3.2.4.4 WikiTalk

The directed graph of WikiTalk is based on Wikipedias Talk pages, which are user pages that
can be edited in order to communicate and discuss updates on articles. The network was created
from changes to these pages, where nodes represent users and edges represent changes made by

one user of another users page.

3.2.4.5 Patents

The Patents dataset is a directed graph containing citations made by US patents during this time
period. The dataset was originally gathered and made public by the National Bureau of
Economic Research (NBER) between year 1963 and 1999.

3.2.4.6 Pokec
Pokec is an online social network, popular in Slovakia, pre-dating Facebook. The dataset
contains anonymised data of the whole network and friendships, represented by the edges in the

graph, are directed.

3.2.4.7 LiveJournal
LiveJournal is an online community for maintaining journals and blogs and has a friend-system.

The graph is undirected.

3.2.4.8 Orkut
Another social network called Orkut, which is now dissolved, was owned and operated by
Google. The graph is undirected and unlike the other social media graphs, describes user-formed

groups and their members instead of friendships.

15
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Chapter 4 - Result
The results of the study will be presented in this section of the report. The results will reveal how
two different paradigm frameworks perform during a test, which applies a single graph mining

algorithm on a cluster containing a single machine.

Each specific graph is processed during five individual sessions for extending and enhancing the
reliability of the study itself. When five sessions have been processed, the final performance

result for each graph will be calculated as the mean value of the five sessions.

4.1 Graph Size
Graph Size - Amount of Nodes Graph Size - Amount of Nodes
\
Wikitalk | Orkut
Amazon l:l LiveJournal

Facebook | Patents |

0 1 2 3 L] 1 2 3 4
Millions Millions

The figures above (fig. 4.1, 4.2) describe the amount of nodes the test graphs consist of. It was of
great interest to perform the test on graphs of all sizes, hence explaining the great variance of
node sizes of the graphs included in the test. The Facebook graph, being the smallest one, is
build by roughly 4,000 nodes. On the other side of the spectrum of graphs there is the
LiveJournal graph, built upon approximately 4 million nodes and is the biggest graph based on
amount of nodes. Following figures down below show the amount of edges for each graph in the

test.
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Graph Size - Amount of Edges Graph Size - Amount of Edges
Wikitalk ‘ Orkut
Amazon l:l LiveJournal
YouTube ‘ Pokec
Facebook D Patents
0 1 2 3 4 5 0 20 40 60 80 100 120
Millions Millions

Based on amount of nodes for each graph, the graph for Orkut data shows a significant high
amount of edges for each node. This is based on Orkut being a social network which share the
traits of having relatively large amounts of edges per node in their corresponding graphs. The
Facebook graph (roughly 88K edges with around 20 times more edges than nodes in that graph)
and the Pokec graph (around 1,7M edges with approximately 19 times more edges than nodes in

that graph) share the same similarities, while also being graphs representing social networks.

4.2 Time Performance for Individual Graph Sessions

To determine the variance of time performance between the five sessions, a diagram of time
results are to be shown in the following sections for each graph. Each diagram for a specific
graph shows time results for five sessions based on the amount of shards during the tests (two

and eight shards respectively) and the paradigm used during the tests (Hadoop and GraphChi).
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4.2.1 Facebook Graph
. Facebook Graph Time Performance - Hadoop . Facebook Graph Time Performance - GraphChi
Time (s) Time (s)
0,5 5
0,45 /\'/\- 0.45
0,4
0,4
0,35
2 Shards 2 Shards
-8 Shards 0,35 -8 Shards
0,3
0,25 0.3
0,2 0,25
1 2 3 4 5 1 2 3 4 5
Test Session Test Session

As shown in the figures above (fig. 6.1, 6.2) the difference in time performance between the two
paradigms is small—especially for the tests applying the algorithm with eight shards. When
using only two shards, the GraphChi paradigm is slightly more efficient than the Hadoop
counterpart. This specific result is special based on the Facebook graph being a considerately

smaller graph, in comparison with the other graphs tested in this study.

4.2.2 YouTube Graph
. YouTube Graph Time Performance - Hadoop ) YouTube Graph Time Performance - GraphChi
Time (s) Time (s)
6,5 7,5
7
6
6,5
55 6 o
2 Shards 2 Shards
55
5 -8 Shards 8- Shards
5
4,5
W 4,5 -
4 ! 4
1 2 3 4 5 1 2 3 4 5
Test Session Test Session
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In this test, as seen above (fig. 7.1, 7.2), it is more clear that the Hadoop paradigm is notably
quicker than the GraphChi paradigm, with roughly one second across all test sessions regardless
of amount of shards used when applying the PageRank algorithm on the YouTube graph.
Compared to the Facebook graph, the YouTube graph has considerably more nodes and edges.

On the other hand, the Facebook graph has roughly 10 times more edges per node in comparison.

4.2.3 Amazon Graph

. Amazon Graph Time Performance - Hadoop . Amazon Graph Time Performance - GraphChi
Time (s) 31 Time (s) 34

2,9 3.2

2,7

3
25

2,8
23 2 Shards 2 Shards
. &8 Shards &8 Shards
2,6
21

19 24

1.7 2,2
1 2 3 4 5 1 2 3 4 5

Test Session Test Session

When it comes to applying the PageRank algorithm on the Amazon graph, Hadoop is roughly
half a second quicker compared to the GraphChi performance. The performance consistency is
shared from the YouTube test in the above section (fig. 8.1, 8.2). Also, the Amazon graph has

nearly as many edges per node as the YouTube graph.
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4.2.4 Wikitalk Graph
. Wikitalk Graph Time Performance - Hadoop ) Wikitalk Graph Time Performance - GraphChi
Time (s) Time (s)
10 1"
9,5 10,5
9 10
8,5 9,5
2 Shards 2 Shards
88 Shards -8 Shards
8 9 :
75 8,5
W\.
7 T 8
1 2 3 4 5 1 2 3 4 5
Test Session Test Session

During the testing of the Wikitalk graph, the tests with two shards Hadoop showed a great
variance of time results during the five test sessions. In the long run, the Hadoop paradigm
performed the fastest with two shards. The tests applying eight shards when processing the
Wikitalk graph showed a more stable time result output, where it is more clear that the Hadoop
paradigm is the fastest one, with roughly 7,3 seconds compared to GraphChi’s 8,9 seconds

(mean values).

4.2.5 Patents Graph
iy Patents Graph Time Performance - Hadoop . Patents Graph Time Performance - GraphChi
Time (s) Time (s)
45 45
40 41
35 37
2 Shards 2 Shards
30 -8 Shards 33 =5 Shards
25 29
_ o .—’.\I/.\'
20 T ! 25
1 2 3 4 5 1 2 3 4 5
Test Session Test Session

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

Running the PageRank algorithm on the Patents graph with two shards, both paradigms
performed almost equally—Hadoop was approximately one second quicker (comparing mean
values) than the GraphChi paradigm during the test, which is a minor difference considering the
total running time. For the PageRank algorithm with eight shards, Hadoop showed a consistently

more efficient trend compared to GraphChi throughout the tests seen above (fig. 10.1, 10.2).

4.2.6 Pokec Graph
y Pokec Graph Time Performance - Hadoo, i - i
Time (s) P P Time (s) Pokec Graph Time Performance - GraphChi
38
34
36
32 34
30 32
2 Shards 30 2 Shards
&8 Shards &8 Shards
28
28
—_—————— e
26
26
— —
24 . 24
1 2 3 4 5 1 2 3 4 5
Test Session Test Session

The Pokec graph showed tendencies of being more efficiently processed when using Hadoop, as
shown in the figures above (fig. 11.1, 11.2). When running the PageRank algorithm with two
shards, the Hadoop paradigm never exceeded 34 seconds in any test session, which was not the
case for the GraphChi paradigm. During the tests involving eight shards, Hadoop outperformed

GraphChi with roughly two seconds during all five test sessions.
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4.2.7 LiveJournal Graph

) LiveJournal Graph Time Performance - Hadoop ) LiveJournal Graph Time Performance - GraphChi
Time (s) Time (s)

44
42 46
40 44
38 42 -
36 40

2 Shards 2 Shards
34 ~#-8 Shards 38 &8 Shards
32 36
¥ ./'_7 34
28 T 32

1 2 3 4 5 1 2 3 4 5
Test Session Test Session

The graph of LiveJournal showed a particularly varied during the five tests utilising the
PageRank algorithm with two shards (fig. 12.1, 12.2). The best result for GraphChi is on the
same level as Hadoop’s worst time performance, thus making Hadoop the fastest paradigm
during tests with two shards. When comparing the two paradigms in the tests with eight shards,

Hadoop was again showing better overall results compared to GraphChi.

4.2.8 Orkut Graph
. Orkut Graph Time Performance - Hadoop . Orkut Graph Time Performance - GraphChi
Time (s) Time (s)
110 115
108
106 10
104
102
100 105
2 Shards 2 Shards
98 -8 Shards &5 Shards
96
100
o \/\
92
920 T 95 T
1 2 3 4 5 1 2 3 4 5
Test Session Test Session
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The Orkut graph is by far the largest graph included in the test; with approximately 38 times
more edges than nodes, Orkut has considerably more edges than any other graph in this test
which makes it more complex in terms of processing with the PageRank algorithm. Test results
for two shards found in the figures above show almost no difference between the paradigms (fig.
13.1, 13.2). The difference in time performance is less than half a second. Both paradigms
exceed the 100-second time frame, thus making such a small difference more or less negligible
in terms of of this study’s limitations. Greater differences in terms of time results are achieved
only when applying the PageRank algorithm with eight shards. In that scenario, Hadoop is once
more the most efficient algorithm with around a four second difference compared to the

GraphChi algorithm.

4.3 Time Performance For All Sessions

Time (s) PageRank Time Performance (2 Shards) Time (s) PageRank Time Performance (2 Shards)
120
10
100
8
80
6 | -
®Hadoop 60 —— ®Hadoop
BGraphChi BGraphChi
4
40
2 I:| ) B
0 —— 0
Facebook YouTube Amazon Wikitalk Patents Pokec LiveJournal Orkut

Both figures displayed above (fig. 14.1, 14.2) summarise the time performance tests performed
on the single machine in this study, when applying the PageRank algorithm with two shards on
all graphs included. Hadoop is more efficient in processing the graphs during almost all tests,
with Facebook being the only difference. Hadoop is better when processing the Orkut graph,
with a slight time difference of less than half a second as stated in section 4.2.8 of this study.
GraphChi manages to beat Hadoop when processing the Facebook graph, with a mean time of

roughly 0,29 seconds compared to Hadoop’s 0,31 seconds. The similarities shared between the
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graph structures of Facebook’s and Orkut’s graphs are the high edges per node-ratio with the

difference being the total size of the graph.

Time (s) PageRank Time Performance (8 Shards) Time (s) PageRank Time Performance (8 Shards)
10 100

®Hadoop

BGraphChi
4 40

— iﬂﬂﬂ[

Facebook YouTube Amazon Wikitalk Patents Pokec LiveJournal Orkut

HHadoop
5GraphChi

Figure 15.1 and 15.2 showcase the overall time performance with mean values from the tests
performed with the PageRank algorithm applied on all graphs, with eight shards. As with the
tests using two shards (fig. 14.1, 14.2) Hadoop outperforms GraphChi. Even the Facebook graph
displayed, marginally, better results with Hadoop (0,443 seconds compared to GraphChi’s 0,446
seconds). Eight shards results in an overall improved performance when processing most graphs
in both paradigms. The Facebook network graph is considerably smaller than the other graphs

and showed a somewhat worse time performance when increasing the number of shards.
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Chapter 5 - Discussion

Hadoop generally performs best on multiple-node clusters and—because of how the map and
reduce functions work—it has to pass the graph continuously between the machines, using up a
lot of bandwidth. GraphChi, on the other hand, is optimised for graph mining on a single
consumer-level machine. Theoretically, this should imply that the GraphChi paradigm
outperforms the Hadoop counterpart, so we expected great time differences in favour of

GraphChi, especially when running tests with a higher amount of shards.

The result for the time performances in figures 14 and 15 show that Hadoop, contrary to what we
expected, generally performs as fast, or even better, than GraphChi for the relatively small
graphs we used. The mean time taken to mine each graph only differ by a few seconds for all the
different graphs. According to Kyrola et al. (2012) GraphChi computes graphs with billions of
edges efficiently. The graphs we used had at most 120 million edges. It is probable that these
smaller graphs did not allow GraphChi to show its strengths and therefore likely that GraphChi
would outperform Hadoop on larger built consisting of billions of edges. Unfortunately, due to
the limited time frame given for this study, and restrictions regarding the availability of large
graphs, there were no possibilities of including a deeper analysis of such graphs in this study.
Further studies with larger graphs, with billions of edges, are therefore of high interest and

suggested.

Another aspect that might have had an impact on the results is the algorithm used, which is
PageRank. We used a version that was included with the GraphChi distribution and developed to
be easy and swift to use. To get as little of an impact as possible, we wanted to use that same
algorithm. However it is possible that the results would have been different, if we would have

used different PageRank algorithms.
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As stated above, we had a few limitation aspects to take into account while performing this
study. First and foremost, due to the time frame given for the study, we had to limit our tests to
be performed on a single machine which instantly limited the amount of possible distributed data
mining paradigms to use for the tests. Even though this limitation existed, we managed to find
two paradigms highly suitable for this kind of study and specifically developed for single node
clusters. Even though distributed data mining is usually processed on multiple clusters,
containing thousands of computing machines, we managed to motivate this study and enhance its
purpose by exclusively choosing paradigms developed for running data on single machines.
Moreover, the very limited time frame for this kind of theoretical area also affected the range of
this study; even larger graphs and more test sessions would instantly increase the reliability of

this study and give a deeper and more thorough answer to the problem stated.
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Chapter 6 - Conclusion

Distributed data mining is a large subject. Many paradigms have been created with the purpose
of mining the huge amounts of data generated each day. Data sets can take on different structures
and some can be seen as a graph. The first paradigms used, utilised the idea of map and reduce
functions to mine data, which is not an optimal way of mining graph structured data sets. On the
subject of distributed graph mining, many paradigms are optimised for large clusters. Hadoop
however can be set up on single node clusters and GraphChi is optimised for them. Hadoop is
built on the older idea of map and reduce functions for distributed data mining, while GraphChi
has been optimised for mining large graphs (with billions of edges). The graphs used in this
study consist of millions of edges, because of the limited availability of larger graphs. The
algorithm used to mine these graphs was PageRank, a widely used algorithm. For these smaller
graphs our test runs give us the answer to our problem statement that there are no advantages to
using a graph-specific distributed data mining paradigm for the PageRank algorithm in single
node clusters on graph data, at least not on graphs with less than billions of edges. In fact, for

graphs with millions of edges, Hadoop performed even better, if only slightly, than GraphChi.
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