
www.F
irs

tR
an

ke
r.c

om

Final Thesis

Analysis of a multiple dispatch
algorithm

by

Johannes Holmberg

LITH-IDA-EX--04/018--SE

2004-02-17

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Final Thesis

Analysis of a multiple dispatch
algorithm

by

Johannes Holmberg

LiTH-IDA-EX--04/018--SE

2004-02-17
Linköpings universitet

Supervisor: Björn Hägglund,
Department of Computer and Information Science

Examiner: Anders Haraldsson,
Department of Computer and Information Science

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Abstract
The development of the new programming language Scream, within
the project Software Renaissance, led to the need of a good multiple
dispatch algorithm. A multiple dispatch algorithm, called Compressed
n-dimensional table with row sharing; CNT-RS, was developed from
the algorithm Compressed n-dimensional table, CNT. The purpose of
CNT-RS was to create a more efficient algorithm. This report is the
result of the work to analyse the CNT-RS algorithm.

In this report the domain of multiple dispatch, the multiple
dispatch algorithm CNT and the new extended algorithm CNT-RS are
presented. The correctness of CNT-RS algorithm is shown and it’s
proven that the CNT-RS algorithm is at least as good as the CNT
algorithm, in regards to space complexity of the dispatch structure.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Table of contents
1 Introduction... 1

1.1 Background... 1
1.1.1 Scream ... 1

1.2 Dispatch.. 1
1.3 Multiple dispatch.. 3

1.3.1 The Visitor design pattern ... 3
1.3.2 Multiple dispatch today ... 4

1.4 Assignment ... 6
1.5 Organisation of this report.. 6

2 The algorithms of CNT and CNT-RS .. 7
2.1 Some notions used.. 7
2.2 CNT - Compressed n-dimensional table...................................... 7

2.2.1 Example: An example with CNT. 10
2.3 CNT-RS - Compressed n-dimensional table with row sharing .. 15

2.3.1 Example: Same example with CNT-RS. 16
2.3.2 Correctness of CNT-RS ... 23

2.3.2.1 Correctness of the elimination condition.................... 24
2.3.2.2 Correctness of the grouping condition 25

3 Space complexity .. 27
3.1 Unit of Measurement.. 27
3.2 CNT ... 27
3.3 CNT-RS .. 27
3.4 Comparison of CNT and CNT-RS .. 28
3.5 A worst case example of CNT-RS ... 28

4 Future work ... 32
5 Conclusion .. 33

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 1

1 Introduction
In this chapter an introduction to this thesis is given.

1.1 Background
This master thesis was made within the Software Renaissance project
[8]. “The Software Renaissance Project aims at an integrated and
extremely adaptable programming environment for interactive
intentional programming. Ideally, adaptability is taken so far that
language features are provided in libraries rather than languages, in
order to facilitate third party development and deployment of
individual language concepts. Indeed, the whole purpose with
adaptability is to maximize the speed with which the programming
environment evolves towards new heights for each problem domain.”
[8]

1.1.1 Scream
In the Software Renaissance project [8] a new multiple dispatch
language, Scream [6], is being created. A large portion of the
execution of programs written in Scream will be in the dispatch so a
good, in regard to time and space complexity, multiple dispatch
algorithm will be needed.

The creation of Scream aims at creating a language with such
an adaptability and expressive power that the problem of language
disintegration gets solved.

1.2 Dispatch
Dispatching is the determination of which method to use when a
function call is made. This can be done statically at compilation time,
if possible, or dynamically at run time. To be able to do it statically

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 2

the type hierarchy and the methods has to be static and we must have a
strongly typed language so that we know the type of any object at all
places. There are also different kinds of mixes of dispatching statically
and dynamically.

Today's object-oriented languages use single dispatch to
determine which method to be invoked at a function call. In the single
dispatch scheme the dispatch is based on the method name and one
single argument, one single receiver or the object the function is
working on.

In object-orientation single dispatch is used in the way that all
methods are associated with one type. For example when a function
call ()noomo ,...,. 21 is made, the method used is determined by the type
of object 1o . The determination is made by checking the type of 1o ,
let’s say that it’s 1T , and if 1T has a method m that method is used. If

1T doesn’t have a method m one goes on and checks if any of the
parents of 1T in the type hierarchy has any method m . One goes on
like this until a method m is found. There are more efficient ways to
do this than the one above. One could for example create a table with
the associations of method name and type to which method to use. At
a function call only a simple table look up is needed. The method used
will be the method that belongs to the type that is the most specific
applicable. That is to say the applicable type that is the subtype of all
other applicable types.

This scheme has its limitations. For example when a method is
used in a relation between two or more objects one would like that the
method used is dependent on all the types in the relation. Otherwise
one has to associate the method with one type and in the
implementation for the method have a case separation for the rest of
the arguments. This could obscure the view of what the method
actually does.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 3

As one can see from the way the method is found, by looking at
the parent type of the type if there is no method for the type, if only
single inheritance is allowed there will always be one most specific, if
any, method. If we allow multiple inheritance we could get an
ambiguity of which method that are the most specific if two sibling
types both have the method. So if one have single inheritance and
multiple inheritance one needs a scheme for solving ambiguous
function calls.

1.3 Multiple dispatch
With multiple dispatch the dispatch is made on some or all arguments.
For example if a function call ()noom ,...,1 is made, the method to use
could be decided on the basis of the types of all objects noo ,...,1 . Let’s
say that they are nTT ,...,1 . The dispatch will look for a method m the
formal arguments nTT ,...,1 . If such a method is found, it will be used,
otherwise a method with formal arguments ',...,'1 nTT such that 'ii TT ≤
will be looked for. The method used will be the most specific one.

Thanks to this dependent on many arguments multiple dispatch
is more powerful than single dispatch, but also more complex.

1.3.1 The Visitor design pattern
A consequence of the more powerful expressive power, from multiple
dispatch, is that the design pattern Visitor [4: p331-344] becomes
superfluous. A design pattern is a core of the solution to a recurring
design an implementation problem. When you use a design pattern
you take this core and adapt it to the current problem. These design
patterns have been used for a long time and have evolved over many
years. The main motivation for documenting these design patterns was
to get designing of reusable object-oriented software. Design patterns
are however not limited to object-oriented software design and

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 4

implementation in object-oriented languages. Procedural languages
would need design patterns for “Inheritance”, “Encapsulation” and
“Polymorphism, things that are built-in in object-oriented languages.
In the same way object-oriented languages would need the Visitor
pattern, but the key to the visitor pattern, double dispatch, is a part of
multiple dispatch languages. The double dispatch the Visitor pattern is
using is that the operation that gets executed depends on both the type
of Visitor and the type of Element it visits.

The motivation for the Visitor pattern is that you want to add
operations to classes without changing them. This is done through that
the Visitor yield objects whose only responsibilities are to implement
a request on another object or group of objects. The design patterns
can be classified by their purpose and scope. The Visitor pattern is
classified as Behavioural purpose and Object scope.

As the Visitor pattern has been documented it has to have been
occurring often enough to be worth it and therefore there exist a need
for the multiple dispatch. You can say that the Visitor pattern exists
because of the lack of multiple dispatch.

1.3.2 Multiple dispatch today
A reason for that the multiple dispatch isn’t used today is that people
have thought that the added time or space complexity isn’t
compensated by the greater expressive power of the multiple dispatch.
This excuse gets less and less relevant as the algorithms for multiple
dispatch gets better and better in time or space complexity. One
argument for using the more complex multiple dispatch is that
designers and programmers should do what they do best, i.e. design
and implement, and not be trying to come up with workarounds
because of limitations in the language. Also these workarounds can
make the program execute slowly. In these cases a good
implementation of multiple dispatch into the language would generate

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 5

the possibility to write more easily understandable code and a faster
executing program.

There are some techniques to perform the multiple dispatch.
Two of the proposed techniques are Single receiver projections, SRP
[5], and Multiple row displacement, MRD [7]. SRP algorithm means
that you have n single-receiver dispatch tables and projects n-arity
methods on these n tables. For good computation time and space
requirements the algorithm is implemented with bit vectors and needs
the aid of special hardware support for some bit operations. The MRD
do the same elimination and grouping as the CNT and by row
displacement combines it into one vector and thereby can make some
more savings in space requirement.

There are three main concerns, regarding the efficiency of a
multiple dispatch algorithm. Those concerns are the time to create any
dispatch structure, the size of that structure and the time to do the
method dispatching at a function call.

Dispatch can be performed in constant time using dispatch
tables. The tables, if not compressed, become very large. Consider that
a programming library can contain a couple of hundred types and an
application using this library can have something like a hundred types.
Let’s say for example that we have, in total, a type hierarchy Θ with
the number of types 800=Θ then the approximate size of an
uncompressed dispatch table for a three-targeted method would be

≈Θ 3 500MB. The corresponding sizes for a four-targeted and five-
targeted method are respectively 400GB and 300TB. Note that this is
for one generic function. As shown by these numbers to use
uncompressed dispatch tables are not possible.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 6

1.4 Assignment
The assignment was to study different aspects of the new algorithm
CNT-RS. At the beginning the focus was at computing the amortised
space complexity of the multiple dispatch algorithm CNT-RS and
comparing it to the multiple dispatch algorithm CNT. The computation
and definition of this amortised space complexity dragged out on time
so the focus of the work shifted to prove the correctness of the CNT-RS
algorithm.

A major part of the work was to describe the two algorithms
and especially the newly developed CNT-RS algorithm as it hasn’t been
described in writing before.

1.5 Organisation of this report
The organisation of this report is as follows: We start of with an
introduction containing the background, to this report, dispatch and
multiple dispatch, and the assignment in chapter 1 Introduction. It is
followed by the description of the two algorithms, CNT and CNT-RS, in
chapter 2 The algorithms. Both algorithms’ descriptions are
accompanied with an example being walked trough. Also the CNT-RS
algorithm is proven to be correct. In chapter 3 Space complexity, the
aspect of space complexity is handled. The space complexity of the
algorithms is described and compared. It’s also shown that the CNT-RS
also can give a worst case with uncompressed dispatch structure.
Following this, possible future work is described in chapter 4 Future
work. And finishing this report is chapter 5 Conclusion, where the
conclusions of this report are drawn.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 7

2 The algorithms of CNT and CNT-RS
In this chapter the CNT and the CNT-RS algorithms are presented and
applied to an example. Also the correctness of the CNT-RS algorithm is
shown.

2.1 Some notions used
If nothing else is explicitly stated the following denotations is used.
 Θ denotes the type hierarchy.
 Θ denotes the number of types in the type hierarchy.
 m denotes the generic function.
 n denotes the arity of the of the generic function.
 T denotes a type.
 iT denotes a type at argument position i .
 ()MS denotes the most specific method, the method to dispatch to.
 i

mPole denotes the i-poles. i
mPole denotes the number of i-poles.

 i
mMPole denotes the i-multipoles. i

mMPole denotes the number of
 i-multipoles.

2.2 CNT - Compressed n-dimensional table
Compressed n-dimensional table, [3]. As the name implies the CNT
algorithm uses n-dimensional tables for dispatching and one dispatch
table per generic function with arity n. The CNT algorithm builds on
two observations: (i) that entries corresponding to invocations for
which there are no applicable method can be eliminated and (ii) that
identical (n-1)-dimensional rows can be grouped together. The naive
approach, to first build the uncompressed dispatch table and then
compress it, has a worst-case time complexity of ()1

*
+ΘΟ n

n per
generic function, which is not acceptable performance. Also the size

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 8

of the uncompressed table will at an early state be too large to handle.
The idea of the CNT algorithm is to determine which entries can be
eliminated and which can be grouped without having to go through
the whole dispatch table and thereby avoid the bad time complexity of
the naive approach. There are two simple conditions to determine
when elimination and grouping can be done. They are as follow:
 Elimination Condition: The entry for type T in the ith dimension of
the dispatch table of m can be eliminated if and only if
 () ()() 0,...,,,,...,,,..., 111

1
11 /=Θ∈∀ −−

−
− nii

n
n TTTTTmMSTT .

 Grouping Condition: The two entries for types T and 'T in the ith
dimension of the dispatch table of m can be grouped if and only if
 () ,,...,,,..., 1

111
−

+− Θ∈∀ n
nii TTTT

 ()() ()()nnnnii TTTTTmMSTTTTTmMS ,...,,',,...,,...,,,,..., 111111 +−+− = .
This in words is: If there is no most specific method for method

m when type T is at the ith position, the entries can be eliminated. If
most specific method for method m is the same when the ith position
is of type T and 'T they can be grouped.

All the groups created by groping contain a supertype of all the
other types in the group. This type is called a pole and the types in the
group are said to belong to the influence of the pole. A type that does
not belong to an influence can be eliminated. A pole is called an i-pole
if it’s a pole for the ith argument position. The set of i -poles for the
generic function m is denoted by i

mPole . If a type belongs to the
formal arguments of the method m the pole is a primary pole. All
other poles are secondary poles. The poles form a pole hierarchy in
accordance with the type hierarchy.

These poles can be computed in a single pass over the set of
types using the notion of i

mpolesclosest − .

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 9

 Definition 2.2.1. Let m be a generic function of arity n, Θ∈T , and
ni ≤≤1 ; the set of closest poles of T is

 () { }'|'min TTPoleTTpolesclosest i
m

i
m <∈=− ≤

How you use this is to make a total order of the partially
ordered type hierarchy such that all parents come before their
children. In this total order you go from the start and associate each
type with the pole in which influence the type is in. Which pole this is,
is decided by these conditions:

If the type is a primary pole the type is associated with itself.
If it’s not a primary pole:

If the type has no parents or the parents are not associated with
any pole the type is not in any pole’s influence and the type isn’t
associated with anything.
Else if any of the type’s parents’ associated poles is the subtype
of all the other associated poles, the type is associated with this
pole.
Else the type is associated with itself; the type is a secondary
pole.

With this approach to computing the poles you don’t get the optimal
compression of the dispatch table, but it’s an easy way to compute the
poles and you don’t do any compressions that are not allowed. The
compression you are missing is that you can get more than the optimal
number of secondary poles because types, which are not primary
poles, inheriting from exactly the same primary poles are both marked
as secondary poles even though they could be grouped together
according to the grouping condition.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 10

A B

C D

Figure 1 Illustrating missing compression.

Figure 1 illustrates this missing of possible compression, where A and
B are poles and C and D will be different poles even though they
could be grouped together.

2.2.1 Example: An example with CNT.

Figure 2 The example problem

A

B C D

E F G

H I

J

()AEBm ,,3

()EBAm ,,2

()ABAm ,,1

()BCDm ,,5

()ECDm ,,6

()ACDm ,,4

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 11

A to J are types in the type hierarchy, a type is a subtype of an other
type if there is a arrow from the first type to the other and m is a
generic function with arity 3. We start of with finding the primary
poles for each argument position. They are at the first position
{A,B,D}, at the second {B,C,E} and at the third{A,B,E}. Next we
compute the association of each type to the pole in which’s influence
the type belong. First we make a total order of the type hierarchy so
that we can go through it in a way so that we visit the supertypes
before the subtypes. We use A to J alphabetically ordered. We begin
with the first argument position.

Figure 3 Table of type to pole associations

Then we begin with A and A is a primary pole so we associate it with
itself. Next B and B is also a primary pole so it’s also associated with
itself. Next C and C is not a primary pole. C has A as only parent so C
is associated with the same as A, A. Next D and D is a primary pole so
it’s associated with it self. Next E and E has B as only parent so E is
associated with the same as B, B. Next F and F has B and C as

A

B

C

D

E

F

G

H

I

J

A

B

A

D

B

B

D

B

D

J

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 12

parents. B and C are associated with B and A and as B is a subtype of
A F is associated with B. Next G and G has as its only parent D so G
is associated with the same as D, D. Next H and H has E and F as its
parents. E and F are both associated with B so H is also associated
with B. Next I and I has C and G as its parents. C and G are associated
with A and D and as D is a subtype of A I is associated with D. Last J
and J has as its parents F and I. F and I are associated with B and D
and as neither is the subtype of the other J is associated with itself.

We can now see that the poles in the first argument position is
{A,B,D,J}. Also it can be seen that {A,C} is in the influence of A,
{B,E,F,H} is in the influence of B, {D,G,I} is in the influence of D
and {J} is in the influence of J.

Figure 4 The type hierarchy with poles and influences marked and the pole hierarchy

A

B C D

E F G

H I

J

A

B D

J

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 13

The poles marked with an underline and the influences with an oval.
On the right we have the pole hierarchy for the first argument
position. In the same way the pole hierarchies for the second and third
argument position is computed and we get the following.

Figure 5 The second and third pole hierarchies

Now when we have a pole hierarchy for each argument position we
start building the dispatch table. For the first argument position we
need a vector of size four for the poles, for the second four vectors of
size five and for the third twenty vectors of size three.

H

F E

C B A

B

E

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 14

Figure 6 The dispatch table for the example problem

A

B

D

J

B

C

E

F

H

B

C

E

F

H

B

C

E

F

H

A

B

E

B

C

E

F

H

A

B

E

A

B

E

A

B

E

A

B

E

A

B

E

A

B

E

A

B

E

A

B

E

A

B

E
A

B

E

A

B

E

A

B

E

A

B

E

A

B

E
A

B

E

A

B

E

A

B

E

A

B

E

A

B

E

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 15

The number of cells used is 843*5*45*44 =++ , too be compared with

111010*10*1010*1010 =++ for the uncompressed table.

2.3 CNT-RS - Compressed n-dimensional table with
row sharing

Compressed n-dimensional table with row sharing. Even though
the name of the algorithm contains n-dimensional table I personally
thinks it’s easier to visualise the dispatch structure as a collection
of vectors, so elements of the dispatch table will below be referred
to as vectors.

The CNT-RS algorithm is an extension of the CNT algorithm.
This extension is to look at more than one argument at a time and the
introduction of the notion of multipole. The CNT-RS algorithm starts
the same way as the CNT by computing all the poles for each generic
function m and for each argument position i of m . Then it goes on to
computing the multipoles. From the first and second pole hierarchy a
new multitype hierarchy is created. Combining every type from the
first pole hierarchy with every type from the second pole hierarchy
creates the multitypes. The hierarchy is created by the following sub-
/supertype condition: () () DBCADCBA ≤∧≤⇔≤ .. . From this new
multitype hierarchy using the following slightly modified elmination
and grouping conditions create a multipole hierarchy.

The elimination and grouping condition:
 Elimination Condition: The vector for kT Θ∈ in the dispatch table
of m can be eliminated if
 () ()() 0,...,,,,..., 11 /=Θ∈∀ +

−
+ nk

kn
nk TTTmMSTT . (1)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 16

 Grouping Condition: The vectors for kT Θ∈ and kT Θ∈' in the
dispatch table of m are identical and can be shared if
 () ()() ()()nknk

kn
nk TTTmMSTTTmMSTT ,...,,',...,,,,..., 111 ++

−
+ =Θ∈∀ . (2)

After this we go on and create a new multitype hierarchy from
the newly created multipole hierarchy and the third pole hierarchy and
from that compute the multipole hierarchy and so on through all the
arguments.

2.3.1 Example: Same example with CNT-RS.

Figure 7 The example problem

Now we go through the same example again for CNT-RS. First we
compute a pole hierarchy for each argument position. This we done in
the CNT example and here is a repetition of them.

A

B C D

E F G

H I

J

()AEBm ,,3

()EBAm ,,2

()ABAm ,,1

()BCDm ,,5

()ECDm ,,6

()ACDm ,,4

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 17

Figure 8 The pole hierarchies for the first, second and third argument position

Now when we have the pole hierarchies for each argument position
we begin with the computation of the multipole hierarchies. The first
multipole hierarchy is the same as the one for the first argument
position. To compute the second multipole hierarchy we start of by
creating the new multitype hierarchy from the first multipole
hierarchy and the second pole hierarchy.

A

B D

J H

F E

C B A

B

E

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 18

Figure 9 The multitype hierarchy made from the first and second pole hierarchies

From the methods we note that the primary multipoles are
{(A.B),(B.E),(D.C)}. From the new multitype hierarchy and the
primary multipoles we compute the multipole hierarchy in the same
way as computing the poles above.

Figure 10 Table of multitype to multipole associations

A.B A.C

A.E A.F

A.H

B.B B.C

B.E B.F

B.H

D.B D.C

D.E D.F

D.H

J.B J.C

J.E J.F

J.H

(A.B) (A.B)

(A.C) -

(A.E) (A.B)

(A.F) (A.B)

(A.H) (A.B)

(B.B) (A.B)

(B.C) -

(B.E) (B.E)

(B.F) (A.B)

(B.H) (B.E)

(D.B) (A.B)

(D.C) (D.C)

(D.E) (A.B)

(D.F) (D.F)

(D.H) (D.F)

(J.B) (A.B)

(J.C) (D.C)

(J.E) (B.E)

(J.F) (D.F)

(J.H) (J.H)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 19

One thing worth noting here is that (A.C) and (B.C) are not associated
to any multitype and can be eliminated. We get the following second
multipole hierarchy.

Figure 11 The second multipole hierarchy

In other words the vectors for (A.C) and (B.C) can be eliminated,
(A.B), (A.E), (A.F), (A.H), (B.B), (B.F), (D.B), (D.E) and (J.B) can be
shared, (B.E), (B.H) and (J.E) can be shared, (D.C) and (J.C) can be
shared, (D.F), (D.H) and (J.F) can be shared and lastly (J.H) can’t be
eliminated or shared with anyone.

The last multipole hierarchy is not used for compressing the
dispatch structure but for knowing which method to dispatch to. We
also get some additional information that can be used to help solve
ambiguities and rejections. So let’s compute the last multipole
hierarchy. In the same way as before first create a new multitype
hierarchy, note the primary multipoles and compute the influences.

A.B

B.E

D.C

D.F

J.H

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 20

Figure 12 The third multitype hierarchy

The primary multipoles are (A.B.A), (A.B.E), (B.E.A), (D.C.A),
(D.C.B) and (D.C.E). As these are the same as the formal signatures
of the methods they will represent the methods that will be dispatched
to.

A.B.A

A.B.B

A.B.E

D.C.A

D.C.B

D.C.E

B.E.A

B.E.B

B.E.E

D.F.A

D.F.B

D.F.E

J.H.A

J.H.B

J.H.E

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 21

Figure 13 Table of multitype to multipole associations

The secondary multipoles will represent a conflict or ambiguity in the
dispatch.

Figure 14 The last multipole hierarchy

(A.B.A) (A.B.A)

(A.B.B) (A.B.A)

(A.B.E) (A.B.E)

(B.E.A) (B.E.A)

(B.E.B) (B.E.A)

(B.E.E) (B.E.E)

(J.H.A) (J.H.A)

(J.H.B) (J.H.B)

(J.H.E) (J.H.E)

(D.C.A) (D.C.A)

(D.C.B) (D.C.B)

(D.C.E) (D.C.E)

(D.F.A) (D.F.A)

(D.F.B) (D.F.B)

(D.F.E) (D.F.E)

A.B.A D.C.A

D.C.B

D.C.E

B.E.A D.F.A

D.F.B

D.F.E

J.H.A

J.H.B

J.H.E

A.B.E

B.E.E

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 22

Primary multipoles marked with straight underline and secondary
multipoles marked with wavy underline. Now let’ s build the dispatch
structure.

Figure 15 The dispatch structure

A

B

D

J

B

C

E

F

H

B

C

E

F

H

B

C

E

F

H

B

C

E

F

H

A

B

E

A

B

E

A

B

E

A

B

E

A

B

E

A.B.A D.C.A

D.C.B

D.C.E

B.E.A D.F.A

D.F.B

D.F.E

J.H.A

J.H.B

J.H.E

A.B.E

B.E.E

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 23

The number of cells used is 393*55*44 =++ too being compared with
84 for CNT and 1110 for the uncompressed table.

2.3.2 Correctness of CNT-RS
The correctness proof will be given in some what analogy with the
correctness proof of the CNT algorithm in [3]. This analogy should
make it easier for readers, who are already familiar with the CNT
proof, to digest this without risking the understanding for readers who
don’t. First some definitions will be made and some facts will be
stated. All definitions are adaptations of the definitions in [3] to the
“multi case”. At all of these a reference to the analogue of it in [3] will
be given.
 Definition 2.3.2.1. (Definition 2.1.) A method ()n

k
i

kkk TTTm ,...,, 1+ is
applicable to a signature ()ni TTT ,...,, 1+ , denoted by ()ni

k TTTm ,...,, 1+≥ , if
and only if () ()nin

k
i

kk TTTTTT ,...,,,...,, 11 ++ ≥ .
 Definition 2.3.2.2. (Definition 4.1.3.) The ith static multiarguments
of a generic function m, denoted i

mMStatic , are the multitypes of the i
first formal arguments of the methods of m :

=i
mMStatic (){ }ni

i TTTmT ,...,,| 1+∃Θ∈
 Definition 2.3.2.3. (Definition 4.1.4.) The ith dynamic
multiarguments of a generic function m , denoted i

mMDynamic , are the
cover of the ith static multiarguments of m :

()i
m

i
m MStaticcoverMDynamic = where () { }TTTTcover ≤= '|'

They represent the mulitypes that can appear at the first argument
positions in invocations of m at run-time. mMDynamic is the same as

n
mMDynamic and []nkDynamicMDynamicMDynamic

n

ki

i
m

k
mm ,0,

1

∈×⊆ ∏
+=

.

 Fact 2.3.2.4. (Fact 4.1.5.) ()() 0/≠⇔∈ smapplicableMDynamics m .

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 24

 Fact 2.3.2.5. (Fact 4.1.7.) i
m

i
m MDynamicMPole ⊂ .

 Definition 2.3.2.6. (Definition 4.1.13.) With every i-multipole T of
a generic function m is associated the set of subtypes of T, noted

()TInfluence i
m , which is defined as
() =TInfluencei

m { }''''',''|' TorTTTMPoleTTT i
m ≤≤/∈∀≤ .

 Fact 2.3.2.7. (Proposition 4.1.15.) Given a generic function m of
arity n, and { }ni ,...,1∈ , let { }l

i
m TTMPole ,...,1= , then

()=
=

Υ
l

k
k

i
m TInfluence

1

 i
mMDynamic .

 Definition 2.3.2.8. (Definition 4.1.16.) For each type T in iΘ , we
define i

mMpole :
 If i

mMDynamicT ∈ then () ()'' TInfluenceTTTMpole i
m

i
m ∈⇔=

 Otherwise () 0=TMpolei
m

2.3.2.1 Correctness of the elimination condition
The following statement will be proven: For every generic function m
of arity n, and { }ni ,...,1∈ , the vector for multitype T can be eliminated
from the dimension i of the dispatch table of m if T does not belong to
the influence of any i-multipole.

We prove that if we assume that T does not belong to the
influence of any i-multipole, then it verifies () ,,...,1

in
ni TT −

+ Θ∈∀
()() 0,...,, 1 /=+ ni TTTmMS .
By Fact 2.3.2.7, i

mMDynamicT ∉ . By Definition 2.3.2.3,
() mni MDynamicTTT ∉+ ,...,, 1 . By Fact 2.3.2.4, ()() 0,...,, 1 /=+ ni TTTmapplicable .
Hence as there are can be no most specific applicable method when
there are no applicable method we get ()() 0...,, 1 /=+ ni TTTmMS .

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 25

As the cell associated with ()ni TTT ,...,, 1+ is composed of members
of ()()ni TTTmMS ,...,, 1+ , it is also empty. Consequently the entry for T can
be eliminated.

2.3.2.2 Correctness of the grouping condition
Let m be a generic function of arity n, for each i, ni ≤≤1 , and for each
multitype i

mMDynamicT ∈ , the entries for multitype T and ()TMpolei
m

can be grouped in the dispatch table.
We prove that for each i, ni ≤≤1 , i

mMDynamicT ∈∀ ,
() in

ni TT −
+ Θ∈∀ ,...,1 , we have

()() ()()()ni
i
mni TTTMpolemMSTTTmMS ,...,,,...,, 11 ++ = . (7)

If there exist j, ij > , such that i
mj DynamicT ∉ then

() mni MDynamicTTT ∉+ ,...,, 1 , and by Fact 2.3.2.4, both sides of (7)
are 0/ .

Assuming now that () mni MDynamicTTT ∈+ ,...,, 1 , to show (7) we
prove that ()() ()()()ni

i
mni TTTMpolemapplicableTTTmapplicable ,...,,,...,, 11 ++ = and

as the most specific is decided by the type hierarchy, that is all needed
to be shown.

⊆ : As () mni MDynamicTTT ∈+ ,...,, 1 , ()() 0,...,, 1 /≠+ ni TTTmapplicable . Let
() ()()ni

n
k

i
kkk TTTmapplicableTTTm ,...,,...,, 1

1
+

+ ∈ . From Definition 2.3.2.1,

kTT ≤ and kT is an i-multipole. As () k
i
m TTMpole ≤ , km is applicable to

()()ni
i
m TTTMpole ,...,, 1+ .
⊇ : As ()() 0,...,, 1 /≠+ ni TTTmapplicable and ()()⊆+ ni TTTmapplicable ,...,, 1

()()()ni
i
m TTTMpolemapplicable ,...,, 1+ , we get ()()()ni

i
m TTTMpolemapplicable ,...,, 1+

0/≠ . Let ()()()ni
i
mk TTTMpolemapplicablem ,...,, 1+∈ From definition 2.3.2.1,

we have () k
i
m TTMpole ≤ , and we also have ()TMpoleT i

m≤ . By

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 26

transitivity, kTT ≤ , and by Definition 2.3.2.1, ∈km
()()ni TTTmapplicable ,...,, 1+ .

This proves (7), the entries associated with T and ()TMpolei
m can

be grouped.
The above correctness proofs, of the elimination and grouping,

together with the correctness proof of the CNT algorithm gives the
correctness of the CNT-RS algorithm.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 27

3 Space complexity
An important aspect of the dispatch algorithm is how much memory is
used by it. In this section the two algorithm’s space requirements,
expressed in the number of poles, is presented and a comparison
between them is made. This is followed by an example showing that
you can get an uncompressed case even with the CNT-rs algorithm.

3.1 Unit of Measurement
The space complexity of the algorithms is dependent on the
inheritance hierarchy and the apportionment of arity of the methods.
In this case we will only look at the size of the dispatch tables for one
method at a time, because this is what is needed to be able to compare
the two algorithms. The space requirement will be looked at as the
number of table cells needed.

3.2 CNT
The space requirement measured in table cells needed and expressed
in the number of poles. In the first dimension you need 1

mPole table

cells. In the second dimension 21
mm PolePole table cells is needed and

so on. So the total number of table cells needed is as follows.

Number of table cells for method m ∑∏
= =

=
n

i

i

k

k
mPole

1 1

3.3 CNT-RS
The space requirement measured in table cells needed and expressed
in the number of poles. In the first dimension 1

mMPole table cells is

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 28

needed. In the second dimension 21
mm PoleMPole table cells is needed.

In the third dimension 32
mm PoleMPole table cells is needed and so on.

Number of table cells for method m 1 mMPole=

∑
=

−+
n

i

i
m

i
m PoleMPole

2

1

3.4 Comparison of CNT and CNT-RS
The number of multipoles at dimension i is the same or less than the
numbers of types in the new type hierarchy. The new type hierarchy
created at dimension i has i

m
i
m PoleMPole 1− new types.

When i = 1 we have 11
mm PoleMPole = .

Assume when i = j that ∏
=

≤
j

k

k
m

j
m PoleMPole

1

 holds.

When i= j+1:

∏∏
+

==

+++ =≤≤
1

11

111
j

k

k
m

j

k

k
m

j
m

j
m

j
m

j
m PolePolePoleMPolePoleMPole . The induction

principle gives that ∏
=

≤
i

k

k
m

i
m PoleMPole

1

 holds for 1≥i .

From this we get that ∑ ∑∏
= = =

− ≤+
n

i

n

i

i

k

k
m

i
m

i
mm PolePoleMPoleMPole

2 1 1

11 .

And in words that means that CNT-RS is at least as good, space
efficient, as CNT.

3.5 A worst case example of CNT-RS
From the above comparison of CNT and CNT-RS we know that CNT-RS
is at least as good as CNT, but CNT can give an uncompressed table
without having to have a method for every possible combination of
arguments. Here we will present a worst case, uncompressed table,

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 29

example for the CNT-RS algorithm. We get an uncompressed table if
all types/multitypes in the hierarchies are poles/multipoles.

Figure 16 Example that gives an uncompressed table

From this we compute in the same way as above and get that A, B and
C are primary poles and D, E and F are secondary poles for all three
argument positions. That is to say that the pole hierarchies are the
same as the type hierarchy. To get the pole hierarchies like this we
would only have needed 1m , 2m and 3m . So to get an uncompressed
table with CNT we would only have needed these first three methods,
but for CNT-RS we need at least all the methods stated above. To see
why they are needed let’s create the second multitype hierarchy and
see how we can make all the multitypes into multipoles.

A B C

D E F

()BBBm ,,2

()AAAm ,,1

()CCCm ,,3

()ABAm ,,4

()AABm ,,6

()ACAm ,,5

()ACBm ,,7

()AACm ,,8

()ABCm ,,9

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 30

Figure 17 The second multitype hierarchy of the worst case example

B
.A

B

.B

B
.C

B
.D

B

.E

B
.F

C
.A

C

.B

C
.C

C
.D

C

.E

C
.F

D

.A

D
.B

D

.C

D
.D

D

.E

D
.F

E
.A

E

.B

E
.C

E
.D

E

.E

E
.F

F.
A

F.

B

F.
C

F.
D

F.

E

F.
F

A
.A

A

.B

A
.C

A
.D

A

.E

A
.F

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 31

As we can see from the multitype hierarchy the top row has no parents
and has to be primary multipoles to avoid being eliminated. If all the
multitypes in the top row are multipoles we see that all multitypes in
the second row are secondary multipoles as they have two parents
associated with different unrelated multitypes. For the third row it’s
the same thing but with four parents so all the multitypes in the third
row also are multipoles and we now know that all multitypes are
multipoles.

As the third and last multipoles hierarchy doesn’t affect the size
of the dispatch table, and that is all we are interested in in this case,
we don’t need to bother about it.

We can now see why we needed the above nine methods to get
an uncompressed table. This example shows us that only nine of 216
possible methods are needed to get an uncompressed dispatch table if
the type hierarchy and methods are very unfavourable, but it still
better than the CNT’s three.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 32

4 Future work
Some kind of amortised, “on average”, value for the space complexity
should be calculated. This is interesting because we know that the
CNT-RS algorithm gives at least as small tables as the CNT, but we
don’t know what happens “on average”. The space complexity should
be lower on average, but is it? On average, do the two algorithms
grow in the same way? And what is this on average, how will a real
life system written with multiple dispatch look like on average?

There are some improvements possible on the CNT-RS
algorithm. For example the missed grouping described above. How
much better can it be and at what cost?

A “real life” test on the de facto benchmark systems, Cecil [2]
and Dylan[1], should be performed. This should be done to verify the
results in this report and to give concrete numbers to compare to other
multiple dispatch algorithms.

A comparison of space requirement between the CNT-RS
algorithm and the MRD algorithm. MRD does the same elimination and
grouping as CNT and save some more space by the row displacement.
How does the CNT-RS and MRD compare? How does the use of row-
shifting or row-matching in MRD affect the difference.

Does the ordering of the combination of arguments give any
significant difference in space requirement? Is there a better way to
combine the poles than first and second, first, second and third…?

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 33

5 Conclusion
For the development of the programming language Scream, within the
Software renaissance project, a good multiple dispatch algorithm was
needed and the CNT-RS algorithm was developed. The CNT-RS
algorithm is an extension of the CNT algorithm, an algorithm often
referred to in the area of multiple dispatch.

The added elimination and grouping are proven to be correct
and as the CNT algorithm already are proven to be correct the CNT-RS
algorithm is correct.

The CNT-RS algorithm is more space efficient than the CNT
algorithm. Though some more work should be done to, especially see
how the algorithm performs in real life, and compares to other
multiple dispatch algorithms.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Linköpings universitet
Institutionen för datavetenskap

 34

References
1. Apple Computer: Dylan reference manual, Apple Computer, Cupertino,

Calif. 1995
2. C. Chambers: Object-oriented multimethods in Cecil, ECOOP Conference

Proceedings, Springer-Verlag, 1992
3. E. Dujardin, E. Amiel, E. Simon: Fast Algorithms for Compressed

Multimethod Dispatch Table Generation, ACM Transactions on
Programming Languages and Systems, p116-165, January 1998, Volume
20, Number 1.

4. E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design Patterns Elements of
Reusable Object-Oriented Software, Addison Wesley, 16th Printing,
December 1998.

5. W. Holst, D. Szafron, C. Pang, Y, Leontiev: Multi-Method Dispatch Using
Single–Receiver Projections, Technical Report TR-98-03, University of
Alberta, Edmonton, Canada, 1998.

6. B. Hägglund: Design av ett anpassningsbart programspråk, LiTH-IDA-Ex-
02/49, Linköpings universitet, 2002-04-23

7. C. Pang, W. Holst, Y. Leontiev, D. Szafron: Multi-Method Dispatch Using
Multiple Row Displacement, ECOOP’99 Procedings of the 13 th European
Conference on Object-Oriented Programming, p304-328.

8. Softren, www.softren.org, 2004-02-17

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Avdelning, Institution
Division, Department

Institutionen för datavetenskap
581 83 LINKÖPING

Datum
Date
2004-02-17

Språk
Language

Rapporttyp
Report category

ISBN

 Svenska/Swedis
h
X
 Engelska/Englis
h

 Licentiatavhandli
ng
X Examensarbete

ISRN LITH-IDA-EX--04/018--
SE

 C-uppsats
 D-uppsats

Serietitel och
serienummer
Title of series, numbering

ISSN

 Övrig rapport

URL för elektronisk version
http://www.ep.liu.se/exjobb/ida/2004/dd
-d/018/

Titel
Title

Analysis of a multiple dispatch algorithm

Författar
e
 Author

Johannes Holmberg

Sammanfattning
Abstract
The development of the new programming language Scream, within the project
Software Renaissance, led to the need of a good multiple dispatch algorithm. A
multiple dispatch algorithm, called Compressed n-dimensional table with row
sharing; CNT-RS, was developed from the algorithm Compressed n-dimensional
table, CNT. The purpose of CNT-RS was to create a more efficient algorithm. This
report is the result of the work to analyse the CNT-RS algorithm. In this report the
domain of multiple dispatch, the multiple dispatch algorithm CNT and the new
extended algorithm CNT-RS are presented. The correctness of CNT- RS algorithm
is shown and it’s proven that the CNT-RS algorithm is at least as good as the CNT
algorithm, in regards to space complexity of the dispatch structure.

Nyckelord
Keyword
dispatch, multiple dispatch, dispatch table, pole, multipole, influence, type
hierarchy, pole hierarchy, multipole hierarchy

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

 1

På svenska

Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare –
under en längre tid från publiceringsdatum under förutsättning att inga extra-
ordinära omständigheter uppstår.

Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner,
skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för
ickekommersiell forskning och för undervisning. Överföring av upphovsrätten
vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av
dokumentet kräver upphovsmannens medgivande. För att garantera äktheten,
säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ
art.

Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i
den omfattning som god sed kräver vid användning av dokumentet på ovan
beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan
form eller i sådant sammanhang som är kränkande för upphovsmannens litterära
eller konstnärliga anseende eller egenart.

För ytterligare information om Linköping University Electronic Press se
förlagets hemsida http://www.ep.liu.se/

In English

The publishers will keep this document online on the Internet - or its possible
replacement - for a considerable time from the date of publication barring
exceptional circumstances.

The online availability of the document implies a permanent permission for
anyone to read, to download, to print out single copies for your own use and to
use it unchanged for any non-commercial research and educational purpose.
Subsequent transfers of copyright cannot revoke this permission. All other uses
of the document are conditional on the consent of the copyright owner. The
publisher has taken technical and administrative measures to assure authenticity,
security and accessibility.

According to intellectual property law the author has the right to be
mentioned when his/her work is accessed as described above and to be protected
against infringement.

For additional information about the Linköping University Electronic Press
and its procedures for publication and for assurance of document integrity,
please refer to its WWW home page: http://www.ep.liu.se/

© Johannes Holmberg

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

