
www.F
irs

tR
an

ke
r.c

om

Ant Algorithm for Grid Scheduling Problem

Stefka Fidanova and Mariya Durchova

IPP – BAS, Acad. G. Bonchev, bl.25A, 1113 Sofia, Bulgaria
stefka@parallel.bas.bg, mabs@parallel.bas.bg

Abstract. Grid computing is a form of distributed computing that in-
volves coordinating and sharing computing, application, data storage
or network resources across dynamic and geographically dispersed or-
ganizations. The goal of grid task scheduling is to achieve high system
throughput and to match the application needed with the available com-
puting resources. This is matching of resources in a non-deterministically
shared heterogeneous environment. The complexity of scheduling prob-
lem increases with the size of the grid and becomes highly difficult to
solve effectively. To obtain good methods to solve this problem a new
area of research is implemented. This area is based on developed heuris-
tic techniques that provide an optimal or near optimal solution for large
grids. In this paper we introduce a tasks scheduling algorithm for grid
computing. The algorithm is based on Ant Colony Optimization (ACO)
which is a Monte Carlo method. The paper shows how to search for the
best tasks scheduling for grid computing.

1 Introduction

Computational Grids are a new trend in distributed computing systems. They
allow the sharing of geographically distributed resources in an efficient way, ex-
tending the boundaries of what we perceive as distributed computing. Various
sciences can benefit from the use of grids to solve CPU-intensive problems, cre-
ating potential benefits to the entire society. With further development of grid
technology, it is very likely that corporations, universities and public institutions
will exploit grids to enhance their computing infrastructure. In recent years there
has been a large increase in grid technologies research, which has produced some
reference grid implementations.

Task scheduling is an integrated part of parallel and distributed comput-
ing. Intensive research has been done in this area and many results have been
widely accepted. With the emergence of the computational grid, new scheduling
algorithms are in demand for addressing new concerns arising in the grid envi-
ronment. In this environment the scheduling problem is to schedule a stream of
applications from different users to a set of computing resources to maximize
system utilization. This scheduling involves matching of applications needs with
resource availability.

There are three main phases of scheduling on a grid [10]. Phase one is resource
discovery, which generates a list of potential resources. Phase two involves gath-
ering information about those resources and choosing the best set to match the

I. Lirkov, S. Margenov, and J. Waśniewski (Eds.): LSSC 2005, LNCS 3743, pp. 405–412, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.F
irs

tR
an

ke
r.c

om

406 S. Fidanova and M. Durchova

application requirements. In the phase three the job is executed, which includes
file staging and cleanup. In the second phase the choice of the best pairs of jobs
and resources is NP-complete problem [4].

A related scheduling algorithm for the traditional scheduling problem is Dy-
namic Level Scheduling (DLS) algorithm [11]. DLS aims at selecting the best
subtask-machine pair for the next scheduling. To select the best subtask-machine
pair, it provides a model to calculate the dynamic level of the task-machine pair.
The overall goal is to minimize the computational time of the application. In the
grid environment the scheduling algorithm no longer focuses on the subtasks of
an application within a computational host or a virtual organization (clusters,
network of workstations, etc.). The goal is to schedule all the incoming appli-
cations to the available computational power. In [1, 7] some simple heuristics
for dynamic matching and scheduling of a class of independent tasks onto a
heterogeneous computing system have been presented.

There are two different goals for task scheduling: high performance computing
and high throughput computing. The former aims is minimizing the execution
time of each application and later aims is scheduling a set of independent tasks
to increase the processing capacity of the systems over a long period of time.

Our approach is to develop a high throughput computing scheduling algo-
rithm based on ACO. ACO algorithm can be interpreted as parallel replicated
Monte Carlo (MC) systems [12]. MC systems [9] are general stochastic simu-
lation systems, that is, techniques performing repeated sampling experiments
on the model of the system under consideration by making use of a stochastic
component in the state sampling and/or transition rules. Experimental results
are used to update some statistical knowledge about the problem, as well as the
estimate of the variables the researcher is interested in. In turn, this knowledge
can be also iteratively used to reduce the variance in the estimation of the de-
scribed variables, directing the simulation process toward the most interesting
state space regions. Analogously, in ACO algorithms the ants sample the prob-
lem’s solution space by repeatedly applying a stochastic decision policy until a
feasible solution of the considered problem is built. The sampling is realized con-
currently by a collection of differently instantiated replicas of the same ant type.
Each ant “experiment” allows to adaptively modify the local statistical knowl-
edge on the problem structure. The recursive retransmission of such knowledge
determines a reduction in the variance of the whole search process the so far most
interesting explored transitions probabilistically bias future search, preventing
ants to waste resources in not promising regions of the search.

The organization of the paper is as follows. In section 2 the ACO method is
discussed. In section 3 grid scheduling algorithm is introduced. We make some
experimental testing and conclude this study in sections 4 and 5.

2 Ant Colony Optimization

Real ants foraging for food lay down quantities of pheromone (chemical cues)
marking the path that they follow. An isolated ant moves essentially at random
but an ant encountering a previously laid pheromone will detect it and decide to

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.F
irs

tR
an

ke
r.c

om

Ant Algorithm for Grid Scheduling Problem 407

follow it with high probability and thereby reinforce it with a further quantity of
pheromone. The repetition of the above mechanism represents the auto catalytic
behavior of real ant colony where the more the ants follow a trail, the more
attractive that trail becomes.

The ACO algorithms were inspired by the observation of real ant colonies
[2, 3]. An interesting behavior is how ants can find the shortest paths between
food sources and their nest. While walking from a food source to the nest and
vice-versa, ants deposit on the ground a substance called pheromone. Ants can
smell pheromone and then they tend to choose, in probability, paths marked by
strong pheromone concentrations. The pheromone trail allows the ants to find
their way back to the food source (or to the nest).

The above behavior of real ants has inspired ACO algorithm. ACO algo-
rithm, which is a population-based approach, has been successfully applied to
many NP-hard optimization problems [2, 3]. One of its main ideas is the indirect
communication among the individuals of ant colony. This mechanism is based on
an analogy with trails of pheromone which real ants use for communication. The
pheromone trails are a kind of distributed numerical information which is modi-
fied by the ants to reflect their experience accumulated while solving a particular
problem.

The ACO algorithm uses a colony of artificial ants that behave as co-operative
agents in a mathematical space were they are allowed to search and reinforce
pathways (solutions) in order to find the optimal ones. Solution that satisfies the
constraints is feasible. After initialization of the pheromone trails, ants construct
feasible solutions, starting from random nodes, then the pheromone trails are
updated. At each step ants compute a set of feasible moves and select the best
one (according to some probabilistic rules) to carry out the rest of the tour.
The transition probability is based on the heuristic information and pheromone
trail level of the move. The higher value of the pheromone and the heuristic
information, the more profitable it is to select this move and resume the search.
In the beginning, the initial pheromone level is set to a small positive constant
value τ0 and then ants update this value after completing the construction stage.

procedure ACO
begin

Initialize the pheromone
while stopping criterion not satisfied do

Position each ant in a starting node
repeat

for each ant do
Chose next node by applying the state transition rate

end for
until every ant has build a solution
Update the pheromone

end while
end

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.F
irs

tR
an

ke
r.c

om

408 S. Fidanova and M. Durchova

All ACO algorithms adopt specific algorithmic scheme as is shown above.
After the initialization of the pheromone trails and control parameters, a main
loop is repeated until the stopping criteria are met. The stopping criteria can be
a certain number of iterations or a given CPU time limit or time limit without
improving the result. In the main loop the ants construct feasible solutions and
then the pheromone trails are updated. More precisely, partial problem solutions
are seen as states: each ant starts from random state and moves from state i
to another state j of the partial solution. At each step, ant k computes a set
of feasible solutions to its current state and moves to one of these expansions,
according to a probability distribution specified as follows. For ant k the proba-
bility pk

ij to move from a state i to a state j depends on the combination of two
values:

pk
ij =

{
τij .ηij�

l∈allowedk
τil.ηil

if j ∈ allowedk

0 otherwise
(1)

where

– ηij is the attractiveness of the move as computed by some heuristic informa-
tion indicating a prior desirability of that move;

– τij is the pheromone trail level of the move, indicating how profitable it has
been in the past to make that particular move (it represents therefore a
posterior indication of the desirability of that move);

– allowedk is the set of remaining feasible states.

Thus, the higher the value of the pheromone and the heuristic information, the
more profitable it is to include state j in the partial solution. In the beginning,
the initial pheromone level is set to τ0, which is a small positive constant. In the
nature there is not any pheromone on the ground at the beginning, or the initial
pheromone in the nature is τ0 = 0. If in ACO algorithm the initial pheromone
is zero, than the probability to chose next state will be pk

ij = 0 and the search
process will stop from the beginning. Thus it is important the initial pheromone
to be positive value.

The pheromone level of the elements of the solutions is changed by applying
following updating rule:

τij ← ρ.τij + ∆τij , (2)

where the rule 0 < ρ < 1 models evaporation and ∆τij is an additional
pheromone and it is different for different ACO algorithms. Normally the quan-
tity of the added pheromone depends on the quality of the solution.

3 Grid Scheduling Model

Our scheduling algorithm is designed for distributed systems shared asynchro-
nously by both remote and local users.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.F
irs

tR
an

ke
r.c

om

Ant Algorithm for Grid Scheduling Problem 409

3.1 Grid Model

The grid considered in this study is composed of a number of hosts send, each
host is composed of several computational resources, which may be homogeneous
or heterogeneous. The grid scheduler does not own the local hosts, therefore does
not have control over them. The grid scheduler must make best effort decisions
and then submit the jobs to the hosts selected, generally as a user. Furthermore,
the grid scheduler does not have control over the set of jobs submitted to the grid,
or local jobs submitted to the computing hosts directly. This lack of ownership
and control is the source of many of the problems yet to be solved in this area.
The grid scheduling is a particular case of tasks scheduling on machines problem.
In the grid scheduling every machine can execute any task, but for different time.

3.2 Grid Scheduling Algorithm

While there are scheduling request from applications, the scheduler allocates the
application to the host by selecting the best match from the pool of applications
and pool of the available hosts. The selecting strategy can be based on the
prediction of the computing power of the host [6]. We will review some terms
and definitions [7, 8].

The expected execution time ETij of task ti on machine mj is defined as the
amount of time taken by mj to execute ti given that mj has no load when ti is
assigned. The expected completion time CTij of the task ti on machine mj is
defined as the wall-clock time at which mj completes ti (after having finished
any previously assigned tasks). Let M be the total number of the machines. Let
S be the set containing the tasks. Let the beginning time of ti be bi. From the
above definitions, CTij = bi + ETij . The makespan for the complete schedule is
then defined as maxti∈S(CTij). Makespan is a measure of the throughput of the
heterogeneous computing system. The objective of the grid scheduling algorithm
is to minimize the makespan. It is well known that the problem of deciding on
an optimal assignment of jobs to resources is NP-complete. We develop heuristic
algorithm based on ACO to solve this problem.

Existing mapping heuristics can be divided into two categories: on-line mode
and batch mode. In the on-line mode, a task is mapped onto a machine as soon
as it arrives at the mapper. In the batch mode, tasks are not mapped onto the
machines as they arrive, instead they are collected in a set that is examined for
mapping at pre-scheduled times called mapping events. This independent set of
tasks that is considered for mapping at mapping events is called meta-task. In the
on-line mode, each task is considered only once for matching and scheduling. The
minimum completion time heuristic assigns each task to the machine so that the
task will have the earliest computation time [5]. The minimum execution time
heuristic assigns each task to the machine that performs that tasks’ computation
in the least amount of execution time. In batch mode, the scheduler consider a
meta-task for matching and scheduling at each mapping event. This enable the
mapping heuristics to possibly make better decision, because the heuristics have
the resource requirement information for the meta-task and known the actual

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.F
irs

tR
an

ke
r.c

om

410 S. Fidanova and M. Durchova

execution time of a larger number of tasks. Our heuristic algorithm is for batch
mode.

Let the number of the tasks in the set of tasks is greater than the number of
machines in the grid. The result will be triples (task, machine, startingtime).
The function free(j) - shows when the machine mj will be free. If the task ti is
executed on the machine mj then the starting time of ti becomes bi = free(j)+1
and the new value of the function free(j) becomes free(j) = bi + ETij = CTij .

An important part of implementation of ACO algorithm is the graph of the
problem. We need to decide which elements of the problem to correspond to
the nodes and which ones to the arcs. Let M = {m1, m2, . . . , mm} is the set
of the machines and t = {t1, t2, . . . , ts} is the set of the tasks and s > m.
Let {Tij}s×m is the set of the nodes of the graph and to machine mj ∈ M
corresponds a set of nodes {Tkj}s

k=1. The graph is fully connected. The problem is
to choose s nodes of the graph thus to minimize the function F = max(free(j)),
where [bi, CTij ] ∩ [bk, CTkj ] = � for all i, j, k. We will use several ants and
every ant starts from random node to create their solution. There is a tabu list
corresponding to every ant. When a node Tij is chosen by the ant, the nodes
{Tik}m

k=1 is included in tabu list. Thus we prevent the possibility the task ti to
be executed more than ones. An ant add new nodes in the solution till all nodes
are in the tabu list. Like heuristic information we use:

ηij =
1

free(j)
.

Thus if a machine is free earlier, the corresponding node will be more desir-
able. At the end of every iteration we calculate the objective function Fk =
max(free(j)) over the solution constructed by ant k and the added pheromone
by the ant k is:

∆τij =
(1 − ρ)

Fk
.

Hence in the next iterations the elements of the solution with less value of the
objective function will be more desirable. Our ACO implementation is different
from ACO implementation on traditional tasks machines scheduling problem.
The new of our implementation is using of multiple node corresponding to one
machine. It is possible because in grid scheduling problem every machine can
execute any task.

Two kind of sets of tasks are needed: set of scheduled tasks and set of arrived
and unscheduled tasks. When the set of scheduled tasks becomes empty the
scheduled algorithm is started over the tasks from the set of unscheduled tasks.
Thus is guaranteed that the machines will be fully loaded.

4 Experimental Testing

We have developed 3 simulated grid examples to evaluate the newly proposed
ACO algorithm for grid scheduling. In our experimental testing we use 5 het-
erogeneous machines and 20 tasks. The initial parameters are set as follows:

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.F
irs

tR
an

ke
r.c

om

Ant Algorithm for Grid Scheduling Problem 411

τ0 = 0.01 and ρ = 0.5 and we use 1 ant. We compare achieved by ACO algo-
rithm result with often used online-mode.

The results are in minutes. We observe the outperform of ACO algorithm and
the improvement of the result with. In online-mode the arriving order is very
important. In ACO algorithm the most important is the execution time of the
separate task.

Table 1. Makespan for the execution on first free machine and ACO algorithm

online-mode ACO improvement
80 67 16%
174 128 26.4%
95 80 15.8%

5 Conclusion

To confront new challenges in tasks scheduling in a grid environment, we present
in this study heuristic scheduling algorithm. The proposed scheduling algorithm
is designed to achieve high throughput computing in a grid environment. This is a
NP-problem and to be solved needs an exponential time. Therefore the heuristic
algorithm which finds a good solution in a reasonable time is developed. In
this paper heuristic algorithm based on ACO method is discussed and it basic
strategies for a grid scheduling are formulated. This algorithm guarantee good
load balancing of the machines. In ACO technique it is very important how the
graph of the problem is created. Another research direction is to create different
heuristic based algorithms for problems arising in grid computing.

Acknowledgments

Stefka Fidanova was supported by the European Community program “Structur-
ing the European Research Area” contract No MERG-CT-2004-510714. Mariya
Durchova was supported by the Bulgarian IST Center of Competence in 21st

century — BIS-21++ funded by European Commission in FP6 INCO via grant
016639/2005.

References

1. Braun T. D., Siegel H. J., Beck N., Bolony L., Maheswaram M., Reuther A. I.,
Robertson J.P., Theys M. D., Jao B.: A taxonomy for describing matching and
scheduling heuristics for mixed-machine heterogeneous computing systems, IEEE
Workshop on Advances in Parallel and Distributed Systems, (1998) 330–335.

2. Dorigo, M., Di Caro, G.: The Ant Colony Optimization metaheuristic. In: New
Idea in Optimization, Corne, D., Dorigo, M., Glover, F. eds., McGrow-Hill (1999)
11–32.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.F
irs

tR
an

ke
r.c

om

412 S. Fidanova and M. Durchova

3. Dorigo, M., Gambardella, L.M.: Ant Colony System: A cooperative Learning Ap-
proach to the Traveling Salesman Problem. IEEE Transaction on Evolutionary
Computation, 1 (1999) 53–66.

4. Fernandez-Baca D.: Allocating Modules to Processors in a Distributed System,
IEEE Transactions on Software Engineering, 15 11 (1989) 1427–1436.

5. Freund R. F., Gherrity M., Ambrosius S., Camp-Bell M., Halderman M., Hensgen
D., Keith E., Kidd T., Kussow M., Lima J.D., Mirabile F., Moore L., Rust B., Siegel
H.J.: Scheduling Resources in Multi-User Heterogeneous Computing Environments
with SmartNet, IEEE Heterogeneous Computing Workshop, (1998) 184–199.

6. Gong L., Sun X.H., Waston E.: Performance Modeling and Prediction of Non-
Dedicated Network Computing, IEEE Transaction on Computer, 51 9 (2002) 1041–
1055.

7. Maheswaran M., Ali S., Siegel H.J., Hensgen D., Freund R.: Dynamic Mapping of
a Class of Independent Tasks onto Heterogeneous Computing Systems, 8th IEEE
Heterogeneous Computing Workshop (HCW’99), San Juan, Puerto Rico, (1999)
30–44.

8. Pinedo M.:Scheduling: Theory, Algorithms and Systems, Prentice Hall, Englewood
Clifts, NJ, (1995).

9. Rubinstein, R. Y.:Simulation and the Monte Carlo Method. John Wiley &Sons,
(1981).

10. Schopf J.M: A General Architecture for Scheduling on the Grid, special issue of
JPDC on Grid Computing, (2002).

11. Sih G.C., Lee E.A.: A Compile-Time Scheduling Heuristic for Inter Connection-
Constrained Heterogeneous Processor Architectures, IEEE Transactions Parallel
and Distributed Systems, 4 (1993) 175–187.

12. Strelsov, S., Vakili, P.: Variance Reduction Algorithms for Parallel Replicated Sim-
ulation of Uniformized Markov Chains. J. of Discrete Event Dynamic Systems:
Theory and Applications, 6 (1996) 159–180.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com


