
www.F
irs

tR
an

ke
r.c

om

Examensarbete

Automatic Transcript Generator for Podcast
Files

Andy Holst
2010-08-01
Ämne: Datavetenskap
Nivå: C
Institution: DFM, Institutionen för datavetenskap, fysik och matematik
Kurskod: 2DV40E

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Summery

In the modern world, the Internet has become a popular place for visitors to gather information,
that can either exist in text or media form. For people with hearing problems, deaf people and
for search engines, it is hard to take part of the content of the speech in the digital media
files known as ”podcast.” To solve this problem; speech recognition can be used to generate
a transcript of the podcast content; so search engines, deaf people and people with hearing
problems can access his information.

The “Auto Transcript Generator” “ATG” application uses speech recognition technology to
be able to transcript content from a podcast file, the ATG uses MPlayer to extract and convert
podcast content if necessary and sends this audio file to the speech recognition system called
Sphinx-4, it’s the decoder that generates the transcript with the recognized words and writes
it to a text file.

Speech recognition takes a PCM digital speech input and generates a “frequency domain” of
the speech sounds and takes these features and compares it with the features in the grammar file
to be able to recognize what words was spoken by converting the phonemes to word (phrases).
The speech recognizer uses Hidden Markov Models ”HMMs” for learning what phonemes forms
specific kinds of words and HMMs to be able to recognize what kinds of phonemes match a
specific word. The ASR “auto speech recognizer” uses a acoustic model, language model and
a dictionary to be able to work. One of many speech recognizer systems is the Sphinx-3 and
Sphinx-4.

The method of the tested ATG system is a quantitative method where the learned speech
content with its transcript is being measured mainly of word accuracy in percentage from all
of the total words. The reliability is stable to test word accuracy, and the same decoder results
are expected with the same settings being run over and over, where the measuring instrument
is the Sphinx-3 decoder

The acoustic model training is done with the SphinxTrain application, where 8 cases of
acoustic models has been trained with different number of speakers. The decoder tests of the
trained data are done with the Sphinx-3 decoder. The ATG system is finalized by coupling
the ATG-handler Java file with MPlayer embedded commands, and with help of the Java
Transcriber ”speech recognizer” file based on the Sphinx-4 library.

The 8 different acoustic models was trained with SphinxTrain, the Sphinx-3 decoder results
shows that the best case for word accuracy is 75 % with the biggest acoustic model and the
worst case of word accuracy is 50 % if the speaker’s accent differs from the trained speakers or
if there is a lot of noise in the speech audio.

The theory of speech recognition coincides with how the Sphinx decoders works, simply by
searching through the acoustic model for equivalent sounds compared to the input sound, and
keeping track of the phonemes until a pause is reached, during this pause the decoder searches
through the language model for equivalent series of phonemes that match a specific word.

The speech recognition is an interesting field, since there is definitely a demand to implement
it in different kinds of applications to satisfy people with disabilities, search engines etc. I had
no idea that training an acoustic model with 2452 speakers and with literally 60 hours of speech
content would take 8 hours instead of 24 hours to train and give a stable word accuracy of 75
% of all of the words.

Creating a speech recognition system is a consuming task, it is fairly easy with the experts
help to get decent accuracy at 75 % by assuming that the necessary time is taken into consid-
eration to test and understand how optimizing can be done on the acoustic model, language
model and the decoder.

One way to increase the word accuracy to 90 to 95 %; can be done with the LDA/MLLT
acoustic model transformation and with out-of-vocabulary meaning (language model) enabled.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Sammanfattning

Internet är ett mycket poplärt ställe för besökarna att hämta information ifr̊an, den här infor-
mationen kan existera i textfiler eller i media-filer ”podcast”. För besökare med hörsel problem
eller besökare som är döva och för sökmotorer s̊a är det sv̊art att ta del utav inneh̊allet i
media-filerna i form utav tal. För att r̊ada bot p̊a detta problem, s̊a kan man använda sig utav
taligenkänning-tekniken för att generera transkribering utav podcast-inneh̊allet.

Auto Transcript Generator ”ATG” applikationen använder sig utav taligenkänning-tekniken
för att nedteckna inneh̊allet i en podcast-fil, ATG-systemet använder sig utav MPlayer för
att eventuellt behöva extrahera eller konvertera ljud-sp̊aret och skicka detta ljud-inneh̊all till
taligenkänning-systemet, Sphinx-4, där Sphinx-4 avkodaren genererar nedteckningen utav de
matchade orden (fraser) och skriver det till en textfil.

Taligenkänningstekniken tar en eller flera PCM-digital-ljud och genererar en ”frekvens
domän” utav tal-ljuden och för dessa egenskaper jämför det med egenskaperna i grammatik-filen
för att matcha ord genom att konvertera tal-ljuden till respektive ord. Moderna taligenkänning-
system använder sig utav Hidden Markov Modeller ”HMMs” för att lära sig om hur talljud i
en viss ordning tillsammans bildar ord och att kunna känna igen vilket ord en samling foneter
motsvarar. Automatisk-taligenkänning-system som CMU ”Carnegie Mellon University” Sphinx
erbjuder, använder sig utav en akustik-modell, spr̊ak-modell och ett lexikon för att fungera.
En av de populära taligenkänning-systemen är Sphinx-3 och Sphinx-4.

Metod för implementation utav ATG-systemet är kvantitativ där all tal-inneh̊all med dess
transkribering mäts exakt hur varje ord i inneh̊allet känns igen utifr̊an den tränade akustik-
modellen, med vald lexikon och spr̊ak-modell. Tillförlitligheten är stabil, upprepade avkod-
ningar utav tal-inneh̊allet ger samma resultat med samma avkodningsinställningar.

Akustik-modell träningen är gjord med SphinxTrain-applikationen, där 8 fall utav akustik-
modeller har tränats med ett antal olika talare och nedteckningar som är testade med ”Sphinx-
3”-avkodaren. ATG-systemet är färdigutvecklad genom att koppla p̊a ATG-Handler-Java filen
med inbyggda MPlayer-funktioner (media-funktioner) och med hjälp utav ”Transcriber.java”-
filen ”taligenkänning-modulen” baserad p̊a Sphinx-4 biblioteket.

8 olika akustik-modeller tränades med SphinxTrain, utifr̊an test resultaten med Sphinx-
3 avkodaren s̊a visade sig att akustik-modellen med flest talare och flest senoner (bundna-
tillst̊and) ger i bästa fall en tillförlitlighet p̊a 75 % utav alla ord i tal-inneh̊allet och i värsta fall
50 % tillförlitlighet om talarens dialekt skiljer sig kraftigt utifr̊an de tränade talarna eller om
det är mycket brus i tal-inneh̊allet.

Teorin om taligenkänning överensstämmer om hur Sphinx-avkodarna fungerar, genom att
söka igenom akustik-modellen efter ekvivalenta tal-ljud utifr̊an inkommande tal-källa, och avko-
daren h̊aller koll p̊a alla matchade foneter till talet slutar med en fonet-pause, under denna paus
sökes spr̊ak-modellen igenom för likartade serier utav foneter som motsvarar ett specifikt ord.

Taligenkänning har många tillämpningsomr̊aden som kan hjälpa människor med olika behov
till vardags men det viktigaste är nog sökmotorerna, som inte kan i nuläget söka igenom podcast-
inneh̊all för indexering. Att träna en akustik-modell med 2452 talare med i princip 60 timmar
tal-inneh̊all tog drygt 8 timmar istället för 24 timmar som ger en ord-tillförlitlighet p̊a 75 %
med Sphinx-3- och Sphinx-4-avkodaren i bästa fall.

Skapandet utav ett taligenkänningsystem är tidskrävande, men relativt enkelt att utföra
med experternas hjälp för att f̊a en hyfsad ord-tillförlitlighet p̊a åtminstone 75 % förutsatt
att man tar sig tiden att testa och först̊a hur optimering utav tillförlitlighet kan utföras p̊a
akustik-modellen, avkodaren och spr̊ak-modellen. För att n̊a upp till ord-tillförlitlighet p̊a 90
till 95 % krävs det att man har LDA/MLLT-transformation tränad p̊a akustik-modellen och
vokabulär som saknar betydelse inställt p̊a spr̊akmodellen.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Abstract

In the modern world, Internet has become a popular place, people with speech hearing disabil-
ities and search engines can’t take part of speech content in podcast files. In order to solve the
problem partially, the Sphinx decoders such as Sphinx-3, Sphinx-4 can be used to implement a
Auto Transcript Generator application, by coupling already existing large acoustic model, lan-
guage model and a existing dictionary, or by training your own large acoustic model, language
model and creating your own dictionary to support continuous speaker independent speech
recognition system.

Keywords: Auto Transcript Generator, embedded MPlayer media functions, Podcast,
Speech, Speech recognition, Hidden Markov Models, Sphinx, Sphinx-3, Sphinx-4, Decoder,
SphinxTrain, Trainer, Acoustic model, Tied-states, Senones, Language model, Dictionary, Tran-
script, Word accuracy, Word error rate

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Preface

The project to research about speech recognition came from own curiosity about how machines
can recognize speech into words. This field has many applications, one of the most interesting
ones is the service robots that is being researched and implemented today that can interact
with humans through speech, here the country Japan is the pioneers when it comes to robot
interaction through speech recognition, speech synthesizer and the field of semantics.

I want to thank all the guys at the CMU Sphinx IRC channel, cmusphinx on ”irc.freenode.net”
for all the questions I had about training an acoustic model, special thanks to Nickolay V.
Shmyrev for all of his aid.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Table of Contents

Summery . 5
Sammanfattning . 6
Abstract . 7
Preface . 8
Table of Contents . 9

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 1
1.3 Goal . 1

1.3.1 Auto Transcript Generator . 2
1.4 Limitations . 2

2 Theory 4
2.1 Auto Transcript Generator application . 4
2.2 Audio process . 4

2.2.1 Basics . 4
2.2.2 MPlayer . 4

2.3 Speech recognition . 5
2.3.1 Basics . 5
2.3.2 HMMs . 5
2.3.3 Acoustic model . 5
2.3.4 Acoustic model training . 6
2.3.5 Lextree . 6
2.3.6 Senones . 6
2.3.7 Language model and Dictionary . 6
2.3.8 Decoder . 6

2.4 CMU Sphinx . 7
2.5 Sphinx-4 . 7

2.5.1 Framework . 7
2.5.2 Features . 8

3 Method 9
3.1 Quantitative method . 9
3.2 Selection . 9

3.2.1 Representative the reality . 9
3.3 Reliability, validity and objectivity . 9

3.3.1 Critical and creatively thinking . 9
3.3.2 Validity . 10
3.3.3 Measuring instrument . 10

3.4 Reliability . 10
3.4.1 Measuring instrument . 10
3.4.2 Objectivity . 11

3.5 Implementation . 11
3.5.1 Measuring instrument . 11
3.5.2 Preparations . 11
3.5.3 Preliminary Investigation . 11
3.5.4 System overview . 11
3.5.5 General system requirements . 11

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3.5.6 Audio conversion and audio extraction 12
3.5.7 Speech recognition . 12
3.5.8 Acoustic models training . 13
3.5.9 Speech recognition tests . 15
3.5.10 Finalize the ATG-system . 17
3.5.11 Demonstration of the ATG-system . 17

3.6 Criticism to chosen method . 17
3.6.1 Majority group of observers . 17

4 Results 18

5 Analysis 19

6 Discussion 20

7 Conclusion 21

8 References 22

9 Appendices 25

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

1 Introduction

1.1 Background

In the modern world, Internet has become a very popular place for people to gather information,
this information can exist in many forms, the most well known are text, audio, video and
pictures. Information in audio and video format without a transcript is hard to understand
for people with hearing difficulties, people that has a hard time to decode speech and to deaf
people and not the least, search engines, like google [1], if it can’t be found, then it don’t exist.

In the video section we have allots of video logs mainly from the hosting site, youtube [2],
here, the voiced-audio can be auto transcribed on the fly with youtube’s speech recognition
technology “ASR” [3] if the author of the material has allowed it, this works pretty well as
long the voice-sound is based on English. However, this does not mean that search engines
can search for transcripts (containing words) in the video/audio files hosted on youtube, unless
they are created by the youtube author, which can be created either manually or by sending
the links or media file to today’s company transcript services which costs money and is time
consuming.

Podcast [4] is much more than video files, they can also be audio files, which many radio
stations and blogging sites have, often these podcast’s are missing transcripts as well so people
with the difficulties I described above can’t take part of this kind of information. The biggest
problem, is that search engines can’t search for words in podcast files, so if the author, who
wants their content in the podcast files to be search able, then they need the transcript of the
respective podcast hosted on the web as well to be sure that the podcast content exist on the
web for search engines like the popular google.

A simple google search after “+podcast +auto +generate +transcript +app +program”
Figure 1 doesn’t provide any valid up to dated links about any kind of speech recognition prod-
uct that can be downloaded and used to generate transcripts from podcast files. However, there
are services like ”Podcast Captioning” [5], ”Transcript of audio” [6], but there is no free/trial
podcast-to-transcript programs that you can download and try to generate your own transcript,
they only exist for company’s that are willing to pay for speech to transcript applications, often
used by the Medical company’s by their service department [7].

Transcripts that are created manually today, either by user or by a company is time con-
suming and requires the presence of the user. Consequently the study of automatic transcript
generation on podcast files appears to be a valid choice of research.

1.2 Purpose

The purpose is to use one of the speech recognition technology that exist on today’s development
frameworks and develop an application to support an automatic transcript generator for a
podcast file so deaf people and people with voice language understanding problem can take
part of the transcript information related to the podcast. And lastly, so search engines can
index each podcast content in greater detail related to their existing transcript hosted on the
web.

1.3 Goal

The goal is to develop an Auto Transcript Generator application that takes a podcast file as
input and send over the audio to the speech recognizer for processing, and finally save the
recognized words to a text transcript file that is being sent over to the transcript smoother
module for removing unnecessary repetitive words and finally save the smoothed up transcript
file to a text file. The main purpose is that the speech recognizer should work as smooth and

1

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

accurate as possible, in order to achieve this, a trained acoustic model and language model is
going to be used, preferably with a new trained acoustic model and language model that is
speaker-independent but requires the language to be in English.

The ATG system’s speech recognizer accuracy is going to be based on the decoder test
result that was done with the selected trained acoustic model, selected dictionary and selected
language model along with the speakers’ speech audio files and their transcripts to the speech
audio files.

1.3.1 Auto Transcript Generator

Is going to be Java based application and have MPlayer [8] and its sibling, mencoder embedded
into the system.

1.3.1.1 Audio process

The ATG “Auto Transcript Generator” takes the podcast file as input, and if necessary, de-
pending on the podcast format, the audio extraction and eventually audio conversion needs to
be done before sent over to the speech recognizer routine in pure wav “wave” format. In order
to achieve this, the ATG-Java application is going to call for MPlayer and mencoder (sibling
to MPlayer) commands in order to achieve necessary extraction and conversion and send the
processed audio stream as pure wave format file to the speech recognizer module.

1.3.1.2 Speech recognizer

The speech recognizer is based on the Sphinx-4 framework that is the state-of-the-art speech
recognition system written entirely in Java [9]. It’s going to use a trained acoustic model and
language model for the input audio file in wave format to provide the recognized words and
send them to the transcript smoother module.

1.3.1.3 Transcript smoother

The recognized words from the speech recognizer is saved to a text file and smoothed up as
much as possible by the transcript smoother to deal with removing unnecessary repeated words.

1.3.1.4 Trained acoustic model and trained language model

The acoustic model and language model is going to be trained with the tools the CMU Sphinx
team provides, otherwise is a trained language and trained acoustic model is going to be used
instead, the first choice is preferable for the best results since the acoustic model can add
more speech audio files for larger support of independent speakers to become even a better
speaker-independent speech recognizer “decoder”.

1.3.1.5 A broad amount of podcast files

To get the best results, and broad amount of different types “themes” of podcast files on English
is going to be tested to be able to draw the best conclusion from the results.

1.4 Limitations

I am going to limit my research on the Sphinx engines [10] and to train my acoustic model,
language model with the trainer tools the CMU Sphinx team provides, and to use these two
models with the Sphinx-4 [11] framework for the speech recognition on podcast files.

2

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Sphinx-4 is based on the Java language, which the ATG application is going be built upon
and entirely Java based, in order to be able to extract and convert the audio from almost any
podcast file format. The MPlayer application is going to be embedded by the ATG application
to make its internal MPlayer and mencoder command calls to fully be able to extract and
convert the audio from the podcast (almost any type) input file if necessary.

3

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

2 Theory

2.1 Auto Transcript Generator application

The “Auto Transcript Generator“ application has 7 defined modules “routines” to work prop-
erly Figure 2. There is 5 possible ways the application routine can take. However, if the podcast
file is valid, it will always be sent in to the proper format, wave (wave) format to the speech
recognizer that will send it to the transcript smoother and finally save the transcript file.

If the podcast file is in invalid format, then an exception will be thrown and the user will
be informed about the problem.

If the podcast is a wave file, then it will be sent to the speech recognizer module that
will generate the recognized words from the audio wave file and at completion it will send the
generated transcript to the transcript smoother module that will smooth up unnecessary words
and save the transcript file.

If the podcast file is not wave file and not a video file, then the audio file will be sent
to the audio converter module and converted to wave format and then be sent to the speech
recognizer.

However, if the podcast file is valid and is a video file, then the audio will be extracted from
the video stream, if the extracted audio stream is in wave format, then it will be sent to speech
recognizer, otherwise it will be sent to the audio converter module.

2.2 Audio process

2.2.1 Basics

Today’s podcast files is either in a video format with a composed video track and an audio
track or they can be in an audio format with specific audio track. There is 3 possibilities that
can take place before the audio can be processed, if it is a video file, then the audio needs to
be extracted, and if it’s not in wave format, then it needs to be converted to wave. The other
possibility is that it’s a audio file that is not in wave format, then it needs to be converted as
well before being processed. For this purpose, MPlayer is going to be used since it can extract
and convert any podcast file to wave format that the speech recognizer, Sphinx-4, supports.

2.2.2 MPlayer

MPlayer is open-source, well maintained and updated with the latest media formats, it’s easy
embeddable in Java application using the slave mode [12] and it is ported for all the major
operating systems (Windows, Unix, Mac) so the portability won’t suffer so much by having
MPlayer embedded into the ATG Java application. There exist an interesting tutorial on [13]
to start with embedding the MPlayer commands into the Java application and is going to be
used for the ATG system.

2.2.2.1 Features

The features that MPlayer provides is long [14], it can stream literally any kind of media format
from any place that you can think of and the documentation of the MPlayer application [15]
gives you an insight of the very broad amount of possibilities you can do, so it is sufficient for
what ATG application needs. It can easily extract and convert an audio of any podcast file,
it takes about 1-2 seconds fully optimized to extract an audio from a podcast file containing
about 45 minutes content and at the same time get it to raw wave audio format.

4

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

2.2.2.2 Functionality

The MPlayer command-line program is very efficient to extract and convert audio files stored
on the podcast file, all it takes is the command “mplayer -quiet -ao pcm:fast:file=audio.wav -vo
null -vc null -framedrop podcast” where “audio.wav” is the output file and “podcast” the input
file. The ”-quiet” switch will make the extraction and conversion process allot faster since it
does not have to output the results to the screen, the ”-vo” and the ”-vc” switches prohibits the
possible existing video stream to be outputted to the screen, making the audio extraction and
conversion to wave format at almost its full extraction and conversion performance. The only
more performance gain the process can get if the output is being redirected to the ”/dev/null”
file which is possible in a Unix system. The audio.wav file is only overwritten or created if the
podcast file contains a valid audio stream format, which is the main check for the exception.

2.3 Speech recognition

2.3.1 Basics

A high level overview of how speech recognition works is provided here [16], where the speech
recognition’s main responsibility is to transform the PCM digital audio into a better acoustic
representation called “frequency domain”, the next step is to apply a grammar so the speech
recognizer knows what to expect and figure out which phonemes are spoken and finally convert
the phonemes into words. The article A Speech Recognition and Synthesis Tool [17] provides a
clear and concise overview of the speech recognition field and all the essential methods used in
this process are exposed in Statistical Methods for Speech Recognition [18].

2.3.2 HMMs

An HMM-based system, like all other speech recognition systems, functions by first learning
the characteristics (or parameters) of a set of sound units, and then using what it has learned
about the units to find the most probable sequence of sound units for a given speech signal. The
process of learning about the sound units is called training. The process of using the knowledge
acquired to deduce the most probable sequence of units in a given signal is called decoding, or
simply recognition.

This technology allows the system to get audio input transcribed or used to interact with
a system [19]. A speech recognition system can handle either a unique speaker or an infinite
number of speakers. Modern speech recognition system are based on HMMs, and Ghahramani
[20] provides a thorough introduction to HMMs.

In the decoding process, every part of the speech signal gets transformed into features that
gets scored against the acoustic model to generate the best matched sequence of phonemes.
With the sequence of phonemes, a related search graph with HMMs states with a entry node
gets generated, every branch from the entry node contains a sequence of related phonemes and
possible paths generating final words at the common exit node called senone. The possible
paths the search graph can take is literally endless from left to right transitions and with
possible self transitions along the way, in order to determine the weights of the paths with its
transitions, a language model is used to find out the best matched (most weighted) words from
each branch in the search graph that has reached the exit node.

2.3.3 Acoustic model

Acoustic model is a file containing a statistical representation of distinct sounds that make
up each word in the language model. There exist two types of acoustic models, the speaker
dependent acoustic model and the speaker independent acoustic model. The speaker dependent

5

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

acoustic model has been designed to handle a unique speaker’s speech, this acoustic model is
usually trained from the concerned person. The speaker independent acoustic model is designed
to handle speech from different people, especially the people who did not participate in training
the acoustic model.

2.3.4 Acoustic model training

Training an acoustic model is done by transforming the speech signals into a sequence of vectors
that represents certain characteristics of the speech signal “phoneme” and the parameters
“features” are then estimated using the vectors (features) for each phoneme.

2.3.5 Lextree

An acoustic model with phonemes has a Lextree of all of the phonemes, where each phoneme
in the language represent a tree with the specific phoneme as the parent node with one or
several branches with combination of phoneme nodes where each leaf branch represents a senone
“word”. For large vocabulary, a large number of senones is needed.

2.3.6 Senones

One thing to remember about training acoustic model, is that a phoneme does not sound
the same with different preceding and post-ceding phoneme neighbours when speech is being
generated, in order to solve this problem, the triphone states are created generating more than
120 000 triphones because English contains about 50 phonemes. This number of senones is to
large for modern computers to handle. To solve this memory space issue, clustering is done by
cluster HMM states with triphones that share similarities, where each cluster is called a senone.
The number of senones per Lextree cause the number of triphone states to be reduced greatly.

Senones provides improved recognition accuracy and pronunciation-optimization capability.
Big number of senones gives better accuracy if the training data set is large. It’s a matter of
try and testing to go for optimal senones on the test data for best speech recognition accuracy.

2.3.7 Language model and Dictionary

A language model groups a broad list of words and their probability of occurrence in a given
sequence. A dictionary list phonemes that is associated to every word. The distinct sounds is
what the phonemes is made of and forms the word.

2.3.8 Decoder

The decoder takes sounds spoken by a user and searches the acoustic model for equivalent
sounds. When a match is found, the decoder determines the phoneme that correspond to the
sound and builds up the search graph with the related matched phonemes. During the decoder
process, it keeps track of all found phonemes until the user’s speech reaches a pause. During
this pause it searches the dictionary file to map the phonemes to the matching words, and it
uses the language model to determine the weights of the final state words. If matches is made,
the decoder will return the best with most weighted (score) matching word or phrase to the
calling program. In order to limit the search space for the decoder, the pruner is set to set the
minimum weight path allowed, by setting this limit, the reduction of paths to final state words
is reduced greatly. By definition, low cost phoneme transitions lower then the minimum weight
is disregarded.

6

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

2.4 CMU Sphinx

The CMU Sphinx Team’s tools is presented since they focus is speech recognition and it is
the core part of the ATG system. The following explanations are based on the official website
and documentations and tutorials provided by the team [21]. The Sphinx team provides four
decoders, they are PocketSphinx (used in live applications), Sphinx-2 (used in interactive ap-
plications), Sphinx-3 (state-of-the-art large vocabulary speech recognition system) and Sphinx-4
(state-of-the-art speech recognition system written entirely in the Java).

“CMU Sphinx is a collection of several incarnations of Sphinx, a versatile continuous speech
recognition tool-kit from the Sphinx group at Carnegie Mellon University in Pittsburgh. It
consists of two major kinds of components: trainers and decoders. The trainers (SphinxTrain
and SimpleLM) are used to build acoustic and language models. These models are one input
used by the various Sphinx decoders to transcribe digital audio. The decoders (Sphinx2, Sphinx3,
and Sphinx4) perform the actual speech recognition. CMU Sphinx is versatile, in that it can be
applied to small, medium, and large vocabulary speech recognition applications.” [22].

The Sphinx-4 framework will be used, since it is a versatile and flexible continuous speech
recognition system and is at least as good as the Sphinx-3 decoder, if not better and faster in
some cases compared to the recognition tests. Since it is Java-based, has good API support for
web services, the object oriented is incorporated in the programming language which makes it
easier to deal with, has good Java documentation and is well maintained and updated often.

In order to use the Sphinx tools in an optimal way, some software are needed, Perl to run
SphinxTrain scripts, C compiler to compile Sphinx sources, the Java platform and Apache Ant
for using Sphinx-4.

2.5 Sphinx-4

Sphinx-4 is an open source project led by Carnegie Mellon University, Sun MicroSystems Inc.,
Applied Computer Science Group - University of Bielefeld, Mitsubishi Electric Research Lab-
oratories. A white paper exist that presents an overview of the framework [23]. First of,
Sphinx-4 is modular and pluggable framework that incorporates design patterns from existing
systems, with sufficient flexibility to support emerging areas of research interest. It supports
any acoustic model structure and supports most of the language models.

2.5.1 Framework

The Sphinx-4 has three principal modules, the FrontEnd, the Decoder and the Linguist getting
material of the Knowledge Base.

The FrontEnd gets a single or several input signals and computes them so that a sequence
of Features (vectors) is created.

The Linguist generates a SearchGraph by translating any kind of standard language, with
the aid of pronunciation information contained in a Lexicon, and with the structural information
stored in sets of AcousticModel.

The SearchManager component located in the Decoder uses the Features from the FrontEnd
and the SearchGraph from the Linguist to perform the actual decoding, generating Results.
During or prior to the recognition process, the application can issue Controls to each of the
modules.

The ConfigurationManager allows the system to be configurable with the number of param-
eters it provides, it also supports for being flexible by allowing the system to dynamically load
and configure modules at run time. Multiple tools are provided by the framework to be able
to track decoder statistics such as word error rate, run time speed and memory usage. Utili-
ties are also provided that supports application-level processing of recognition results, such as

7

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

obtaining result lattices, confidence scores and natural language understanding.

2.5.2 Features

The features of the speech recognition system, Sphinx-4, can be configured from the XML
configuration file, due to that, the Java code to run the system is initially brief.

8

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3 Method

The ATG (Auto Transcript Generator) for podcast files is implemented in the Java program-
ming language since the speech recognition framework, Sphinx-4 is Java based. To describe
the ATG-system briefly, it will take 3 arguments, one for the transcript output file, one for the
wave file (created if necessary) and one for the podcast input file. The ATG system will be
able to extract and convert the podcast audio track to a wave file if necessary.

The audio track in wave format will be the input for the speech recognizer decoder that will
generate a transcript file from the podcast content, and lastly, to smooth up the transcript file
of unnecessary words defined for the English language.

During the implementation process, an acoustic model and a language model is going to
be trained with the tools that the CMU Sphinx team provides to get the best results from the
speaker independent continuous speech recognizer decoder “Sphinx-4 framework” in the ATG
system.

The trained acoustic models is going to be tested against their own transcripts in order to
determine the best speech recognition accuracy for future speech recognition use on different
media content with independent speakers (podcast).

3.1 Quantitative method

It is going to be a truly a quantitative method, where the time to run and process audio is
going to be measured and the results is going to be measured for how reliable and correct they
are compared to existing transcripts.

3.2 Selection

In order to meet this goal, an acoustic model is going to be trained with big number of English
speakers and their respective transcripts from the VoxForge website [24] and by using the
SphinxTrain [25] application. For the speech recognition tests, the primary decoder is going to
be the Sphinx-3 since it is 3 to 5 times faster then the Sphinx-4 decoder, but after successful
decoder tests, the Sphinx-4 decoder can be setup with the same settings as the Sphinx-3 decoder
to get at least the same results but cost of the time factor.

3.2.1 Representative the reality

All of the speakers with their respective transcript from the English speech corpus with 8k
samples and 16 bit sample audio files is being counted for. It is fair to assume that the accent
between the speakers will differ greatly, and therefore be able to support large number of
independent English speakers and the acoustic model can be classified as independent speech
interpretation for the speech decoders such as Sphinx-3 and Sphinx-4 with good accuracy results
of the testing data.

3.3 Reliability, validity and objectivity

3.3.1 Critical and creatively thinking

The Sphinx-4 framework is a versatile and trustworthy modern speech recognizer decoder and
has the ability to test out many of the different settings, however, the settings will be critical
set so a large vocabulary of words can be recognized by different speakers so the speaker
independent environment is met. The creativity is endless, you can literally setup any kind
of application to use this technology to generate transcripts, command a computer or even a

9

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

robot by voice, you can literally build on this technology and build some kind of AI to let the
computer respond with speech synthesis on your inputs (arguments) etc.

The decision to create an auto transcript generator is one of many applications that I feel
is necessary today, especially if you do lots of video blogs and wants to let every one be able to
take part of the content.

The sources for acoustic training and speech recognition will be done from tutorial sources
that the Sphinx team provides and the accuracy of all the words from the transcript will be
measured and the accuracy percentage by number of speakers and senones with large data set
(speakers) is the key features to show how well the speech recognition system works in best
case and in worst case.

3.3.2 Validity

The intentional data of the speech such as word accuracy and word error rate of all the words
was measured that indicates how well the speech recognition system works in general use in
best case and in worst case.

3.3.2.1 Research

The VoxForge English speech corpus satisfied the intended speech recognition data results and
indicated how well the speech recognition will act in best case and worst case depending on
the current decoder setup and with the trained “measured” acoustic model, language model
and the dictionary that is easy to integrate in the decoder system. By carefully studying the
SphinxTrain and Sphinx-3 decoder tutorial, you know what results to expect and how you can
improve the accuracy.

3.3.3 Measuring instrument

The measuring decoders such as Sphinx-3 and Sphinx-4 will give the same accuracy if they have
same decoder settings and the results from the log files they generate indicates how well the
speech recognition system works with the chosen acoustic model, language model and dictionary
with any provided English speech in best case and in worst case compared from the decoder
results from the trained acoustic model.

3.4 Reliability

The reliability of getting the same measured data results is very likely on the same speech
corpus material that is being analysed for speech recognition, it depends how well the acoustic
model and the language model has been trained, the more speakers that is trained, the better
and more speaker independent reliability it will result into, cause of the speakers unique accent
to say words differently.

3.4.1 Measuring instrument

The Sphinx-3 and Sphinx-4 decoder gives the same results of the same speech data as input,
if you however get lower accuracy then the best and worst expected word accuracy of all the
words from the tested trained acoustic model, language model, then you know that the decoder
is not setup properly.

10

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3.4.2 Objectivity

The objectivity was crystal clear from start one, it is very good thing if search engines and
people with hearing difficulties can take part of the detailed podcast content “speech” that is
on the Internet today, and be able to do so with a reliable speech recognition system that is
easy to use. It is the reliable and generated transcript results that matters in feasible time.

3.5 Implementation

3.5.1 Measuring instrument

For training the acoustic models, the SphinxTrain application is going to be used, the language
model and the dictionary is provided in the voxforge-en-r0 1 3.tar.gz brought from VoxForge
site. For the speech recognition tests on the trained acoustic models the Sphinx-3 decoder is
used mainly cause of the speed factor of 3 to 5 times faster then the Sphinx-4 decoder.

3.5.2 Preparations

Before the project of training an acoustic model and a language model for English speech
recognition, I had basic understanding to get speech audio and transcripts from VoxForge and
that the CMU Sphinx Team provides with the necessary tools to be able to train an acoustic
model and language model and to test the trained acoustic model and language model against
one of the Sphinx decoders that supports it.

3.5.3 Preliminary Investigation

Preliminary investigation shows that MPlayer application and the Sphinx-4 decoder, along with
the CMU Sphinx team’s training tools is sufficient for creating the ATG system. The CMU
Sphinx team provides the necessary training tools and tutorials to setup both the acoustic
model, the language model and to setup the Sphinx-4 framework [26].

3.5.4 System overview

We have already described the early stage flow chart of the experimental ATG system Figure 2,
the implementation on the ATG system is going to be Java based, mainly because the Sphinx-4
speech system is Java based.

3.5.5 General system requirements

In order to start developing the ATG-system, some libs and applications needed were installed,
the Java run time environment “JRE” [27] to be able to run Java applications, Java development
kit “JDK” to develop Java applications.

On the audio extraction and conversion side, the MPlayer [28] application was installed, and
in order to be able to make it smooth to compile and distribute both Sphinx-4 framework with
the ATG system, the Apache Ant [29] binary distribution was installed along with Sphinx-4
framework system.

For the training tools, SphinxTrain [30] to train the acoustic model was installed and the
“CMU SLM Tool-kit” [31] to train the language model might be needed.

The development system needs the GNU C compiler and Perl in order to use the training
tools properly and to compile the MPlayer source code which is recommended, so it was made
sure to be installed on the Linux system.

The main importance for starters before starting to developing Java applications for the
Sphinx-4 framework and to compile Sphinx-4 Java code, is that the operating system that is

11

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

being used for development, must have ANT HOME environment variable set to the directory
where Ant is installed and the path to the Ant’s bin directory, and that the JAVA HOME
environment variable must be set to the latest version of the JDK installed, and this was done
as shown below on a Unix/Linux system in bash:

1 export ANT_HOME="/usr/share/ant/"

2 export JAVA_HOME="/usr/lib/jvm/java-6-sun -1.6.0.19/"

3 export PATH=${PATH } : ${ANT_HOME}/bin

3.5.6 Audio conversion and audio extraction

The two modules shown in the Figure 2 and processed in combined module with the help from
the MPlayer application that is embedded into the ATG system.

MPlayer section in the theory part described the command process of extracting and con-
verting the audio track from the podcast if necessary, that is, the MPlayer command ”mplayer
-quiet -ao pcm:fast:file=audio.wav -vo null -vc null -framedrop podcast”. The podcast is the
input and the ”audio.wav” is the output, the other switches are just to null video output and
mute unnecessary audio output to speed up the audio conversion and audio extraction process.
The ”audio.wav” is only created if there exist a valid audio format track on the podcast file
and that it’s not equal to raw wave (wav) audio format.

However, it is necessary for the MPlayer to be able to identify the tracks that is on the
original podcast file, and take the right decision if audio extraction and conversion is necessary,
this is going to be done with the command mplayer -identify -frames 0 podcast, where the
-identify switch identify outputs of all recognizable tracks formats and settings, and the next
step of what to do is based on this information logged to a stream.

There is basically two cases that is taken into consideration before what to do, one, if the
podcast contains a video track and an audio track, then an extraction and dump or conversion
of the audio track is necessary; two, if it is an audio podcast file, then check format audio type
and convert it only if its not a raw wave format. It is necessary that audio extraction and
conversion takes place if audio track is not a wave format, this is necessary cause Sphinx-4 only
supports raw audio and wave audio formats.

These two cases are easily achievable with the two commands described above in this section,
however, the MPlayer standard output and the standard error output is going to redirected
to the same stream in order to handle the right decisions, see Listing 1. With help of the
LineRedirecter class, it is possible to output the standard output and error output to the same
stream and to let the MPlayer stay idle in the background, so you can redirect input streams
to the MPlayer process and get back the default output stream directed to the BufferedReader
mplayerOutErr, see Listing 2.

With the code above and the predefined settings, it is possible to take the right actions to
identify if necessary audio extraction and audio conversion is needed or if just audio conversion
is necessary. If not, then the podcast file can be used at input for the speech recognizer instead
of a new created wave file.

3.5.7 Speech recognition

The main purpose for why the Sphinx-4 framework has been chosen is because it has proven
to be reliable speech recognition system after two decades of development. It is also the latest
speech recognition framework that CMU Sphinx team provides and is maintained frequently.
The big factors to use it is the big ease of use to work with it (configurations) compared to other
speech recognition decoders, and lastly it is a versatile and flexible continuous speech recognition

12

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

system and highly flexible modular architecture system, see the architecture Figure 3. The
features the Sphinx4 framework provides is going to be taken advantage of to satisfy the needs
of the ATG system.

In order for the speech recognition system to be able to work as a complete state-of-the-art
HMM-based speech recognition system, the framework (Sphinx-3/Sphinx-4) needs the trained
acoustic model, language model, dictionary and the filler dictionary.

3.5.8 Acoustic models training

3.5.8.1 SphinxTrain preparation

In these tests, the SphinxTrain was used to train the acoustic models for the small and big
training data.

The Sphinx-3 decoder was used to retrieve the SER ”sentence error rate” and the WER
”word error rate”.

For starters, before the acoustic models got trained, all the necessary steps how to proceed
with basic acoustic model training was read from the CMU Sphinx’s SphinxTrain tutorial.

To be able to train the acoustic models, all the 8k samples, 16 bit sample audio data with
their respective transcripts was downloaded from the VoxForge website containing about 3,2 GB
compressed English data. The voxforge-en-r0 1 3 SphinxTrain setup was used as a guideline
and baseline for my acoustic model training setup.

The voxforge-en-r0 1 3 SphinxTrain setup includes a dictionary, filler, phone, and a language
model for the VoxForge acoustic 8k samples, 16 bit sample English speech corpus audio data.

The dictionary file voxforge en.dic contains over 100,000 of words with their respective
phonemes to support the most known common English words that also covers all the words
from the transcripts provided with the speech data, this is a dependency to get the accuracy
level at a decent level (fifty % correct of all the words for large vocabulary data with short
utterances per transcript line.)

The language model, voxforge en.lm is basically generated with help from CMU-Cam -Tool-
kit v2 application ”Statistical Language Modelling Tool-kit” based on all the 41924 transcript
sentences; this language model creation is done from the transcription that belongs to the
VoxForge 8k samples, 16 bit sample speech corpus.

The SphinxTrain includes a filler file voxforge en.filler for filler sounds such as <s>, <sil>,
and </s>. The voxforge en.phone includes the phones that is used by the training set and
even phones not used by the training set. The voxforge en.transcription contains the tran-
scription of each audio file surrounded by the markers <s>, and </s>. The feat.params and
sphinx train.cfg is generated by the SphinxTrain setup.

Before the acoustic models got created, the SphinxTrain was checked out in the cmusphinx’s
trunk folder in the Linux environment system with a subversion checkout and installed with
the following commands:

1 svn co https : // cmusphinx . svn . sourceforge . net : / svnroot/cmusphinx/trunk/
SphinxTrain

2 cd SphinxTrain

3 . / configure
4 make

After the SphinxTrain installation, in the cmusphinx’s trunk directory the folder voxforge en
was created and configured with the commands:

1 mkdir voxforge_en

13

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

2 cd voxforge_en

3 perl . . / SphinxTrain/scripts_pl/setup_SphinxTrain . pl −task voxforge_en

Inside the voxforge en directory, the files from the voxforge-en-r0 1 3, that is voxforge en.dic,
voxforge en.filler, voxforge en.lm (language model), and its bash scripts in the script folder was
copied over to the top directory of the voxforge en folder. There after the acoustic models was
trained in eight different levels, in general the first 7 was set with training a small data set with
just different senones and different number of speakers with their respective transcripts. Case
8 was trained with all possible speakers and their available transcripts and audio speech files
for a very large vocabulary.

3.5.8.2 Data preparation

For each case, the build.sh script Listing 3 was executed in the top level of the voxforge en
directory with the command:

1 bash scripts/Build . sh $NUM_SPEAKERS < speakers_list

The build.sh script adds the number of speakers in alphabetic order from the speaker list
as input. The speakers with the proper transcript file named ”PROMPTS” will be added
to the etc/allprompts for further text processing their available transcripts and audio speech
files for a very large vocabulary. This will result into that transcription text and audio text
files will be created which are; the etc/voxforge en.transcription containing all the transcrip-
tion and the related audio files, the etc/voxforge en.transcription.train for the acoustic train-
ing, the etc/voxforge en.transcription.test for the decoding performance testing, the etc/vox-
forge en.fileids.train for the acoustic training audio files and the etc/voxforge en.fileids.test for
the audio files for the decoding performance test.

The features of the wave files for both the training set and the decoding set will be generated
in form of mfc extension files inside the feat folder at the top directory of voxforge en folder.

3.5.8.3 Train cases

First case First case, with 50 speakers (unique and non unique speakers accounted for) in
alphabetic order with 426 transcript sentences and the training settings was set to 25 senones,
5 states per HMM with skip states enabled for continuous speech.

The ”$CFG LTSOOV” set to ’yes’, ”$CFG DIAGFULL” set to ’yes’, ”$CFG WAVFILE
EXTENSION” set to wave, ”$CFG WAVFILE TYPE” set to ’mswav’, the ”$CFG LISTOF-
FILES” was set to ”voxforge en.fileids.train” and the ”$CFG TRANSCRIPTFILE” was set to
voxforge en.transcription.train. The other settings was standard generated by the SphinxTrain
setup Listing 4. The estimated total hours training, 0.39 hours.

Second case Second case, with 50 speakers in alphabetic order and the training settings
was set to 50 senones, the rest was the same as for the first case. Estimated total hours training,
0.39 hours.

Third case Third case with 100 speakers and 100 senones and 882 transcript sentences.
The rest of the settings was same as for Listing 4. The estimated training time 0.38 hours.

Fourth case Fourth case with 100 speakers and 200 senones, but the most of the ”sphinx
train.cfg” file was setup like the ”voxforge-en-r0 1 3” SphinxTrain setup. The ”$CFG FEAT
WINDOW” set to 0, the ”$CFG FORCEALIGN” set to yes and states per HMM set to 3

14

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

and skip states disabled, the ”$CFG FINAL NUM DENSITIES” set to 16 instead of 4 for
continuous acoustic models.

The reason why this was tested instead of the default settings, was that increasing senones
bigger then the speakers number seems to increase SER percentage, but it didn’t in this case,
most likely cause final states of matched words got reached (skip states disabled) and more
senones was used, as you will see in the ”Sphinx-3” decoding tests. The estimated training
time, 0.38 hours, actually took 0.28 hours.

Fifth case Fifth case with 500 speakers and 4468 transcript sentences with 50 senones
and the same training settings as for the first case. The estimated training time, 2.77 hours.
The actual time it took to train the acoustic model, 34 minutes.

Sixth case Sixth case with 500 speakers and 500 senones, and the same settings as for
the fifth case. Estimated training time 2.77 hours, actual training time, 34 minutes.

Seventh case 7th case with 500 speakers and 1000 senones, and the same settings as for
the fifth case. Estimated training time 2.77 hours, actual training time, 40 minutes.

Eighth case 8th case with 2452 speakers and 3000 senones, the rest of the settings are
the same as for the fourth case, as for the voxforge-en-r0 1 3 SphinxTrain setup. Estimated
training time, 24.60 hours, actual training time, 6 hours and 4 minutes.

3.5.8.4 Acoustic training process

For each case, after the data preparation was done with the execution of the bash script,
build.sh in the top level directory of the voxforge en, the next step was to do the acoustic
training started with the command:

1 perl scripts_pl/RunAll . pl

3.5.9 Speech recognition tests

In this section, the eighth trained acoustic models are being tested with the Sphinx-3 decoder.
The intention from the start was to test them out with the Sphinx-4 decoder, but, since Sphinx-
3 decoder is three to five times faster then the Sphinx-4 decoder and easier to start out with,
since Sphinx-3 is easy to setup and use the parameters from the SphinxTrain’s config file for
recognition.

The results from the Sphinx-3 decoder should be the same with Sphinx-4 decoder if it’s
configured the same way as the Sphinx-3 decoder was configured. Sphinx-4 decoder is a Java
port from the C based Sphinx-3 decoder and works at least as good as Sphinx-3 if not better,
but in cost of the lesser speed factor.

3.5.9.1 Sphinx-3 setup

First, sphinxbase was checked out through subversion, since Sphinx-3 decoder requires the
sphinxbase to be installed. There after, the Sphinx-3 was checked out in the cmusphinx’s trunk
folder. Sphinxbase was installed, then Sphinx-3 was installed, the commands are:

15

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

1 svn co https : // cmusphinx . svn . sourceforge . net : / svnroot/cmusphinx/trunk/
sphinxbase

2 svn co https : // cmusphinx . svn . sourceforge . net : / svnroot/cmusphinx/trunk/sphinx3
3 cd sphinxbase

4 . / autogen . sh
5 . / configure
6 make

7 cd . . / sphinx3

8 . / autogen . sh
9 . / configure −−prefix=‘pwd ‘ / build −−with−sphinxbase=‘pwd ‘ / . . / sphinxbase

10 make

11 make install

After this, the Sphinx-3 was attached to the voxforge en folder with the commands:

1 perl . . / sphinx3/scripts/setup_sphinx3 . pl −task voxforge_en

where the sphinx decoder.cfg Listing 5 got generated inside the etc folder in the voxforge en
top directory

3.5.9.2 Recognition evaluation measures

Nickolay V. Shmyrev speech recognition developer states that the Sphinx decoders gives an
accuracy of 50 % WER at decent level with large vocabulary data set with small utterances
[32] and with default trained acoustic model with SphinxTrain. However, if there is audio
noise or if the accent differs from the trained data, then expect the WER on the tested trained
acoustic model to be a multiple of a factor 2 related from the speech recognition performance
test on the original trained speakers.

In order to efficiently evaluate the Sphinx-3 decoder (Sphinx-4 decoder too), output text
called hypothesis is aligned with the actual transcription named reference. Three error types
are distinguished in the speech recognition process. First of is the substitution that deals with
the words that are wrongly recognized. Secondly, the insertion deals with additional in the
hypothesis that is irrelevant to the reference ”transcript sentence”. And thirdly, the deletion is
counted for the words that is present in the reference, but not in the hypothesis.

Two measures permit to quantify the errors, namely Word Accuracy and Word Error Rate,
they are determined as:

WA =
total words - substitutions - deletions - insertions

total words
(1)

WER =
total word errors

total words
(2)

total word errors = substitutions + insertions + deletions (3)

where total words is the number of words in the reference transcript.

3.5.9.3 Sphinx-3 decode process

For each trained acoustic model, the decoding test for each case was executed when the
proper transcripts like the fileids.test, transcription.test and acoustic model was set through the
sphinx decode.cfg file in the top directory of the voxforge en. The decoder accuracy execution
was done with the command:

16

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

1 perl scripts_pl/decode/slave . pl

3.5.10 Finalize the ATG-system

The Sphinx-4 decoder contains allots of source Java files and XML configurations, among the
Java files there exist a file called Transcriber.java and its respective XML configuration file.
The Transcriber got copied over and modified so it takes two arguments, one for the audio wave
file as input and the transcription file argument for where the recognized words gets written to.
The new package ”namespace” for the Transcriber.java file was edited to not be able to collide
with the Sphinx-4’s Transcriber.java file when the Sphinx-4 library is included.

The XML config file that Transcriber refers to got copied over and edited so the same
decoder settings is used that the Nickolay V. Shmyrev used but with one modification, with
the trained acoustic model, case 8, with literally 60 hours speech from 2452 speakers. The rest
was finalized by letting the ATG’s Java main method to call the ATG-handler Java file that
calls for the MPlayer commands and the Transcriber methods if the three arguments, wave file
as output (if necessary), transcription file as output and the podcast file are valid.

3.5.11 Demonstration of the ATG-system

Andy Holst demonstrating the ATG-system [33].

3.6 Criticism to chosen method

3.6.1 Majority group of observers

There is criticism to the chosen method is that case 8 could have the acoustic model trained with
the implemented rejection of OOV (out-of-vocabulary) speech and with the MLLT transform
parameter enabled and calculated to reach the 90 % word accuracy, that Nickolay V. Shmyrev
used [34] with the same amount of data set (speakers and transcripts) but with the Sphinx-4
decoder instead of Sphinx-3 decoder.

The LDA/MLLT transform calculated which I never got to work by following the tutorial
to the letter [35], increases the word accuracy with 25 %, which is roughly:

WA’ = WA + (100 - WA) ∗ 0.25 (4)

75 % Result 1 WA for case 8 is good enough results for the first trial and test run with
the experts advices of what the parameters should be to support large vocabulary independent
continuous speech recognition. However, the acoustic model can easily be trained with the
LDA/MLLT transform with the expense of the long acoustic training process time, either the
estimated 24 hours training time or less depending on the machine hardware in use.

17

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

4 Results

From the results Result 1 and Table 1, in all the 8 cases, the speech recognition is at least 60
%. However, there is a relationship between the number of the trained speakers, vocabulary
set and the number of senones.

The SphinxTrain tutorial insist that for big training data with many speakers and words,
a large number of senones should be used and 3000 senones is recommended. 3000 senones is
used in case 8 and that a bigger number of final densities is set to 16 densities instead of 4 for
the 7 other small acoustic models.

 0

 10

 20

 30

 40

 50

 60

 70

 80

50 100 500 2470

W
or

d
Ac

cu
ra

cy
 In

 P
er

ce
nt

ag
e

Number of Speakers

Speech recognition on 8 different acoustic models

25 senones
50 senones

100 senones
200 senones
500 senones

1000 senones
3000 senones

Result 1: Sphinx-3 decoder results from the acoustic training.

Table 1: Speech recognition results from the trained data

Case Speakers Senones SER WER WA Total words Total sent. Dec time
1 50 25 57.4 % 27.34 % 72.66 % 428 47 3 min
2 50 50 48.9 % 35.75 % 64.25 % 428 47 3 min
3 100 100 65.4 % 37.43 % 62.57 % 7869 882 5 min
4 100 200 52.9 % 25.31 % 74.69 % 7869 882 15 min
5 500 50 67.3 % 42.82 % 57.18 % 4468 496 10 min
6 500 500 57.5 % 29.32 % 70.68 % 4468 496 12 min
7 500 1000 55.2 % 25.56 % 74.44 % 4468 496 12 min
8 2470 3000 55.0 % 24.57 % 75.43 % 354088 37732 22 h

18

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

5 Analysis

The theory of speech recognition coincides with how the Sphinx decoders works that is part
of the ATG system. Simply by searching through the acoustic model for equivalent sounds
compared to the input sound, and keeping track of the phonemes until a pause a reached,
during this pause the decoder searches through the dictionary model for equivalent series of
phonemes that map matching words. Finally the language model defines which matching word
with the highest score is returned to the calling program.

The number of senones was relative okay compared to the number of vocabularies, for case
8, most likely a bigger number of senones could have been used to generate better speech
recognition.

All of these steps worked exactly as processed in the recognition ”decoder” tests, so you
know what the speech recognition accuracy to expect in best case and in worst case from the
other speaker data compared to the trained speaker data.

19

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

6 Discussion

The speech recognition system is an interesting field. I had no idea that it would only take 8
hours to train the acoustic model with 2452 speakers that should take at lest 24 hours, I was
very skeptic during the time that the recognition accuracy should be even so high such s 75 %
WA.

The limitations was that LDA/MLLT transform calculation never worked as expected, that
parameter would increase the WA up with 25 %, so instead of 75 % WA, it would be 81 %
WA and that time was not enough to train more large acoustic models with more then 3000
senones.

Training a acoustic model is very time consuming task to aim for the highest WA and to
setup the Sphinx decoder to use the best search space related to time space to get the best WA
of the incoming audio within reasonable time.

20

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

7 Conclusion

The conclusion of creating a speech recognition system with good word accuracy is that it is
time consuming, but doable if enough patience is counted for with going through the Sphinx
training and decoder tutorials, and by following the recommended trainer and decoder settings
by the expert recommendations.

Lastly in order to improve WA from base settings, if enough reasonable time is given , getting
a word accuracy between 90 % to 95 % works for all speaker data by setting up the optimal
search space, time space, out-of-vocabulary implemented and with noise filter implemented for
the Sphinx decoder of choice if the base word accuracy is at least 80 %.

With the current word accuracy of 75 % for acoustic model with 2452 trained speakers is
the best case, if the speaker that tests the speech recognition system with either different accent
or with lots of noise the in the audio, then the WER will be by a factor two, resulting into
that the WA will be 50 % in worst case. With this amount WA for the worst case, it is not
sufficient to be counted for people with speech hearing disabilities nor the search engine, this
can be only useful if the best WA is at 90 % or greater.

The goals got achieved to implement a ATG system that uses MPlayer for audio process,
Sphinx-4 for speech recognition. The best case and worst case for WA was determined for the
acoustic model case 8 with its dictionary and language model for all kinds of English speakers.
The rest with the decoder can always be optimized when it comes to search space of matching
words by configuring the Sphinx-4 decoder through XML settings.

21

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

8 References

[1] Google Inc. 2010, Google, Google search engine, 11th April 2010, <http://www.google.
com>.

[2] Google Inc. 2010, Youtube, Youtube hosting media files ”video mainly”, 10th April 2010,
<http://www.youtube.com>.

[3] Ken Harrenstien 2009, Automatic captions in YouTube, Describes about the possibil-
ity of automatic captions on video files hosted on youtube, 9th April 2010, <http:
//googleblog.blogspot.com/2009/11/automatic-captions-in-youtube.html>.

[4] Wikipedia 2010, Podcast, Podcast definition, 11th April 2010, <http://en.wikipedia.
org/wiki/Podcast>.

[5] Automatic Sync Technologies 2010, Podcast Captioning, AST’s CaptionSync automated
web-based service delivers captions via email, within minutes of your media file and tran-
script upload. If you don’t have a transcript, our integrated transcription service can get one
for you, 10th April 2010, <http://www.automaticsync.com/captionsync/services/
captions-subtitles/podcast-captions-2/>.

[6] Syntax Trans Inc. 2010, Transcript of audio, Offers speech to transcript services for medical
companies, 9th April 2010, <http://www.syntaxtrans.com/>; <http://www.youtube.
com/watch?v=vPgIoudZyeg>.

[7] Nuance Communication 2010, Speech magic, Is a speech to transcript system used by
medical company’s service department. 9th April 2010, <http://www.nuance.co.uk/
speechmagic/>.

[8] MPlayer Team 2010, MPlayer, Mplayer is a sophisticated application and is more then
just a advanced multi-media player, it can be used for many things, 10th April 2010,
<http://www.mplayerhq.hu/>.

[9] Oracle Inc. 2010, Java, Wikipedia on the Java programming language, 12th April 2010,
<http://en.wikipedia.org/wiki/Java_(programming_language)>.

[10] Carnegie Mellon University 2010, CMU SPHINX, CMU. has built a Sphinx engine to be
able to deliver speech recognition frameworks to support speech to text, 10th April 2010,
<http://cmusphinx.sourceforge.net/>.

[11] Carnegie Mellon University 2010, Sphinx-4, The Sphinx-4 framework is a speech recognizer
system that allows to be equipped with trained language models to support different kind
of speech recognition accuracy and performance, 10th April 2010, <http://cmusphinx.
sourceforge.net/sphinx4/>.

[12] Mplayer Team 2010, SLAVE MODE PROTOCOL, Documentation of MPlayer’s slave-
mode protocol, 12th April 2010, <http://www.mplayerhq.hu/DOCS/tech/slave.txt>.

[13] Adrian 2010, JMPlayer, A tutorial how to embed MPlayer into a Java application, 13th
April 2010, <http://beradrian.wordpress.com/2008/01/30/jmplayer/>.

[14] MPlayer Team 2010, MPlayer Features, A long list of MPlayer features, 14th April 2010,
<http://www.mplayerhq.hu/design7/info.html>.

22

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

[15] MPlayer Team 2010, MPlayer manual, Documentation how to use the MPlayer application
”mplayer and mencoder”, 14th April 2010, <http://www.mplayerhq.hu/DOCS/man/en/
mplayer.1.txt>.

[16] Engineered Station 2001, How Speech Recognition Works An high overview theory of how
speech recognition works, 15th April 2010, <http://project.uet.itgo.com/speech.
htm>.

[17] H. ElAarag and L. Schindler 2006, A speech recognition and synthesis tool, ACM-SE06,
The University of Mississippi.

[18] F. Jelinek 1999, Statistical Methods for Speech Recognition, MIT Press, Massachusetts
Institute of Technology.

[19] cicheung2008 2008, DIY Voice Control Tank, A demonstration of CMU Sphinx engine in
action, 15th April 2010, <http://www.youtube.com/watch?v=f4LUBX6mwBk>.

[20] Z. Ghahramani 2001, An Introduction to Hidden Markov Models and Bayesian Networks
International Journal of Pattern Recognition and Artificial Intelligence, World Scientific.

[21] Carnegie Mellon University 2008, Robust group’s Open Source Tutorial, Demonstrates
how to train the HMM-based speech recognition system, 16th April 2010, <http:
//www.speech.cs.cmu.edu/sphinx/tutorial.html>.

[22] sourceforge 2006, CMU Sphinx Project description of CMU Sphinx that is a speech recog-
nition engine system, 16th April 2010, <http://sourceforge.net/potm/potm-2006-03.
php>.

[23] Willie Walker, Paul Lamere, Philip Kwok, Bhiksha Raj, Rita Singh, Evandro Gouvea,
Peter Wolf and Joe Woelfel 2004, Sphinx-4: A Flexible Open Source Framework for
Speech Recognition, SMLI TR2004-0811, Sun Microsystems Inc, <http://cmusphinx.
sourceforge.net/sphinx4/doc/Sphinx4Whitepaper.pdf>.

[24] VoxForge 2010, Welcome, VoxForge site that provides transcripts and audio data under
the GPL license for speech recognition systems, 8th May 2010, <http://www.voxforge.
org/>.

[25] Carnegie Mellon University 2010, Robust group’s Open Source Tutorial, Robust group’s
Open Source Tutorial cover the basic steps to do acoustic training and do decoding tests
of the trained acoustic model, 8th May 2010, <http://www.speech.cs.cmu.edu/sphinx/
tutorial.html>.

[26] Carnegie Mellon University 2010, Learn, Wiki and tutorial to start to learn to use the
Sphinx tools that the CMU Sphinx Team provides, 23th April 2010, <http://cmusphinx.
sourceforge.net/learn/>.

[27] ORACLE, 2010, Java SE Downloads, Java ”JRE” and Java ”JDK” and platform download
links, 20th April 2010, <http://java.sun.com/javase/downloads/index.jsp>.

[28] MPlayer Team 2010, Downloads, MPlayer download links for different architecture systems,
20th April 2010, <http://www.mplayerhq.hu/design7/dload.html>.

[29] Apache Software Foundation 2010, Welcome, The website of Apache Ant site, all the
necessary links are the for how to download, install it and start to use it, 20th April 2010,
<http://ant.apache.org/>.

23

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

[30] Carnegie Mellon University 2010, Download, All of the CMU Sphinx tools along with
recognizers and training tools, 23th April 2010, <http://cmusphinx.sourceforge.net/
download/>.

[31] Carnegie Mellon University 2010, Statistical Language Modeling Toolkit, The SLM toolkit
is meant for large amounts of training data. If you intend to train a language model
from a few dozen or even hundred sentences, please refer to the lmtool, 8th May 2010,
<http://www.speech.cs.cmu.edu/SLM/toolkit.html>.

[32] Nickolay V. Shmyrev, 2010, How to improve accuracy, Describes ways to improve
speech recognition accuracy, 9th May 2010, <http://nsh.nexiwave.com/2009/08/
how-to-improve-accuracy.html>.

[33] Andy Holst, 2010, Auto Transcript Generator, Demonstration of the Auto Tran-
script Generator application, 1st August 2010, <http://www.youtube.com/watch?v=
XObHlwfqagc>.

[34] Nickolay V. Shmyrev, 2010, Testing ASR with Voxforge Database, Nickolay demonstrates
how important it is that we have open source on speech corpus that people can use to train
their acoustic model and how efficient the ASR can be on the English database, 12th May
2010, <http://nsh.nexiwave.com/2010/04/testing-asr-with-voxforge-database.
html>.

[35] Carnegie Mellon University Sphinx 2010, Training an acoustic model with LDA and
MLLT feature transforms, Wiki of how you are supposed to setup SphinxTrain to enable
training with LDA and MLLT feature transforms, 12 May 2010, <http://cmusphinx.
sourceforge.net/wiki/ldamllt>.

24

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

9 Appendices

Appendix 1: Figures
Appendix 2: Listings

25

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Appendix 1 (number of pages: 3)

Figure 1: Google search for ”+podcast +auto +generate +transcript +app +program”

1

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Figure 2: The flow chart of the Auto Transcript Generator system

2

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Figure 3: Sphinx-4 Decoder Framework. The main blocks are the FrontEnd, the Decoder and the Linguist

3

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Appendix 2 (number of pages: 8)

Listing 1: ATG’s Stream Redirecter

1 class LineRedirecter extends Thread {
2 /∗∗ The input stream to read from . ∗/
3 private InputStream in ;
4 /∗∗ The output stream to wr i t e to . ∗/
5 private OutputStream out ;
6
7 /∗∗
8 ∗ @param in the input stream to read from .
9 ∗ @param out the output stream to wr i t e to .

10 ∗ @param p r e f i x the p r e f i x used to p r e f i x the l i n e s when outputt ing to the
l o g g e r .

11 ∗/
12 LineRedirecter (InputStream in , OutputStream out) {
13 this . in = in ;
14 this . out = out ;
15 }
16
17 public void run ()
18 {
19 try {
20 // c r e a t e s the deco ra t ing reader and w r i t e r
21 BufferedReader reader = new BufferedReader (new InputStreamReader (in)

) ;
22 PrintStream printStream = new PrintStream (out) ;
23 String line ;
24
25 // read l i n e by l i n e
26 while ((line = reader . readLine ()) != null) {
27 printStream . println (line) ;
28 }
29 } catch (IOException ioe) {
30 ioe . printStackTrace () ;
31 }
32 }
33 }

Listing 2: The basic MPlayer code setup to be able to identify tracks on podcast file.

1 // I n i t i a t e the MPlayer p roce s s p r ede f i ned s e t t i n g s
2 this . mplayerProcess = Runtime . getRuntime () . exec (start_mplayer) ;
3 // c r e a t e the piped streams where to r e d i r e c t the standard output and e r r o r

o f MPlayer
4 // s p e c i f y a b igge r p i p e s i z e than the d e f a u l t o f 1024
5 PipedInputStream readFrom = new PipedInputStream (1024∗1024) ;
6 PipedOutputStream writeTo = new PipedOutputStream (readFrom) ;
7 BufferedReader mplayerOutErr = new BufferedReader (new InputStreamReader (

readFrom)) ;
8
9 // c r e a t e the threads to r e d i r e c t the standard output and e r r o r o f MPlayer

10 new LineRedirecter (mplayerProcess . getInputStream () , writeTo) . start () ;
11 new LineRedirecter (mplayerProcess . getErrorStream () , writeTo) . start () ;
12
13 // the standard input o f MPlayer
14 PrintStream mplayerIn = new PrintStream (mplayerProcess . getOutputStream ()) ;

Listing 3: Build.sh script for speech data preparation

1

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

1 #! / bin / sh
2
3 arg0=$1

4 download () {
5 cd tgz

6
7 wget −N −nd −c −e robots=off −A tgz , html −r −np \
8 http : // www . repository . voxforge1 . org/downloads/SpeechCorpus/Trunk/Audio/Main/8

kHz_16bit

9
10 cd . .
11 }
12
13 addSpeakers ()
14 {
15 i=0
16 while read −a column

17 do

18 if [$i −lt $arg0] ; then

19 $ (ln −s "../../../../voxforge/audio/8k/test_extract/"${column [∗] } "wav/.")
20 let "i += 1"

21 else

22 break ;
23 fi

24 done

25 }
26
27 unpack () {
28 for f in tgz /∗ . tgz ; do

29 tar xf $f −C wav

30 done

31 }
32
33 convert_flac () {
34 find −L wav −name "*flac*" −type d | while read file ; do

35 outdir=${file//flac/wav}
36 mkdir −p $outdir

37 done

38 find −L wav −name "*.flac" | while read f ; do

39 outfile=${f//flac/wav}
40 flac −s −d $f −o $outfile

41 done

42 }
43
44 collect_prompts () {
45 mkdir etc

46 > etc/allprompts
47 find −L wav −name PROMPTS | while read f ; do

48 echo $f

49 cat $f >> etc/allprompts
50 done

51 #f i n d wav −name prompts | whi le read f ; do
52 # echo $ f
53 # cat $ f >> e t c / a l lprompts
54 #done
55 }
56
57 #FIXME
58 make_prompts () {
59 cat etc/allprompts | sort | sed ’s/mfc/wav/g ’ |

2

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

60 sed ’s : . . / . . / . . / Audio/MFCC/XXkHz_YYbit/MFCC_0_D / : : g ’ > allprompts . tmp
61 mv allprompts . tmp etc/allprompts
62 cat etc/allprompts | awk ’{
63 printf ("<s> ") ;
64 for (i=2;i<=NF ; i++)
65 printf ("%s " , $i) ;
66 printf ("</s> (%s)\n" , $1) ;
67 }
68 ’ > etc/voxforge_en . transcription
69 . / scripts/traintest . sh etc/voxforge_en . transcription
70 . / scripts/build_fileids . py etc/voxforge_en . transcription . train > etc/voxforge_en

. fileids . train
71 . / scripts/build_fileids . py etc/voxforge_en . transcription . test > etc/voxforge_en .

fileids . test
72 }
73
74 addSpeakers

75 convert_flac

76 collect_prompts

77 make_prompts

78 . / scripts_pl/make_feats . pl −ctl etc/voxforge_en . fileids . train
79 . / scripts_pl/make_feats . pl −ctl etc/voxforge_en . fileids . test

Listing 4: SphinxTrain Level 1

1 # Conf igurat ion s c r i p t f o r sphinx t r a i n e r −∗−mode : Perl−∗−
2
3 $CFG_VERBOSE = 1 ; # Determines how much goes to the s c r e en .
4
5 # These are f i l l e d in at c o n f i g u r a t i o n time
6 $CFG_DB_NAME = "voxforge_en" ;
7 $CFG_BASE_DIR = "/home/andy/TB/backup/projects/my_project/cmusphinx/trunk/

voxforge_en" ;
8 $CFG_SPHINXTRAIN_DIR = "../SphinxTrain" ;
9

10 # Direc tory conta in ing SphinxTrain b i n a r i e s
11 $CFG_BIN_DIR = "$CFG_BASE_DIR/bin" ;
12 $CFG_GIF_DIR = "$CFG_BASE_DIR/gifs" ;
13 $CFG_SCRIPT_DIR = "$CFG_BASE_DIR/scripts_pl" ;
14
15 # Experiment name , w i l l be used to name model f i l e s and log f i l e s
16 $CFG_EXPTNAME = "$CFG_DB_NAME" ;
17
18 # Audio waveform and f e a t u r e f i l e in fo rmat ion
19 $CFG_WAVFILES_DIR = "$CFG_BASE_DIR/wav" ;
20 $CFG_WAVFILE_EXTENSION = ’wav’ ;
21 $CFG_WAVFILE_TYPE = ’mswav’ ; # one o f n i s t , mswav , raw
22 $CFG_FEATFILES_DIR = "$CFG_BASE_DIR/feat" ;
23 $CFG_FEATFILE_EXTENSION = ’mfc’ ;
24 $CFG_VECTOR_LENGTH = 13 ;
25
26 $CFG_MIN_ITERATIONS = 1 ; # BW I t e r a t e at l e a s t t h i s many times
27 $CFG_MAX_ITERATIONS = 10 ; # BW Don ’ t i t e r a t e more than th i s , somethings

l i k e l y wrong .
28
29 # (none/max) Type o f AGC to apply to input f i l e s
30 $CFG_AGC = ’none’ ;
31 # (cur rent /none) Type o f c e p s t r a l mean subt ra c t i on / norma l i za t i on
32 # to apply to input f i l e s
33 $CFG_CMN = ’current’ ;
34 # (yes /no) Normalize var i ance o f input f i l e s to 1 .0

3

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

35 $CFG_VARNORM = ’no’ ;
36 # (yes /no) Use l e t t e r−to−sound r u l e s to guess pronunc ia t i ons o f
37 # unknown words (Engl ish , 40−phone s p e c i f i c)
38 $CFG_LTSOOV = ’yes’ ;
39 # (yes /no) Train f u l l covar i ance matr i ce s
40 $CFG_FULLVAR = ’no’ ;
41 # (yes /no) Use d iagona l s only o f f u l l covar iance matr i ce s f o r
42 # Forward−Backward eva lua t i on (recommended i f CFG FULLVAR i s yes)
43 $CFG_DIAGFULL = ’yes’ ;
44
45 # (yes /no) Perform voca l t r a c t l ength norma l i za t i on in t r a i n i n g . This
46 # w i l l r e s u l t in a ” normal ized ” model which r e q u i r e s VTLN to be done
47 # during decoding as we l l .
48 $CFG_VTLN = ’no’ ;
49 # Sta r t i ng warp f a c t o r f o r VTLN
50 $CFG_VTLN_START = 0 . 8 0 ;
51 # Ending warp f a c t o r f o r VTLN
52 $CFG_VTLN_END = 1 . 4 0 ;
53 # Step s i z e o f warping f a c t o r s
54 $CFG_VTLN_STEP = 0 . 0 5 ;
55
56 # Direc tory to wr i t e queue manager l o g s to
57 $CFG_QMGR_DIR = "$CFG_BASE_DIR/qmanager" ;
58 # Direc tory to wr i t e t r a i n i n g l o g s to
59 $CFG_LOG_DIR = "$CFG_BASE_DIR/logdir" ;
60 # Direc tory f o r re−e s t imat i on counts
61 $CFG_BWACCUM_DIR = "$CFG_BASE_DIR/bwaccumdir" ;
62 # Direc tory to wr i t e model parameter f i l e s to
63 $CFG_MODEL_DIR = "$CFG_BASE_DIR/model_parameters" ;
64
65 # Direc tory conta in ing t r a n s c r i p t s and c o n t r o l f i l e s f o r
66 # speaker−adapt ive t r a i n i n g
67 $CFG_LIST_DIR = "$CFG_BASE_DIR/etc" ;
68
69 #∗∗∗∗∗∗∗ v a r i a b l e s used in main t r a i n i n g o f models ∗∗∗∗∗∗∗
70 $CFG_DICTIONARY = "$CFG_LIST_DIR/$CFG_DB_NAME.dic" ;
71 $CFG_RAWPHONEFILE = "$CFG_LIST_DIR/$CFG_DB_NAME.phone" ;
72 $CFG_FILLERDICT = "$CFG_LIST_DIR/$CFG_DB_NAME.filler" ;
73 $CFG_LISTOFFILES = "$CFG_LIST_DIR/${CFG_DB_NAME}.fileids.train" ;
74 $CFG_TRANSCRIPTFILE = "$CFG_LIST_DIR/${CFG_DB_NAME}.transcription.train" ;
75 $CFG_FEATPARAMS = "$CFG_LIST_DIR/feat.params" ;
76
77 #∗∗∗∗∗∗∗ v a r i a b l e s used in c h a r a c t e r i z i n g models ∗∗∗∗∗∗∗
78
79 $CFG_HMM_TYPE = ’.cont.’ ; # Sphinx I I I
80 #$CFG HMM TYPE = ’ . semi . ’ ; # PocketSphinx and Sphinx I I
81 #$CFG HMM TYPE = ’ . ptm . ’ ; # PocketSphinx (l a r g e r data s e t s)
82
83 if (($CFG_HMM_TYPE ne ".semi.")
84 and ($CFG_HMM_TYPE ne ".ptm.")
85 and ($CFG_HMM_TYPE ne ".cont.")) {
86 die "Please choose one CFG_HMM_TYPE out of ’.cont.’, ’.ptm.’, or ’.semi.’,

" .
87 "currently $CFG_HMM_TYPE\n" ;
88 }
89
90 # This c o n f i g u r a t i o n i s f a s t e s t and best f o r most a c o u s t i c models in
91 # PocketSphinx and Sphinx−I I I . See below f o r Sphinx−I I .
92 $CFG_STATESPERHMM = 5 ;
93 $CFG_SKIPSTATE = ’yes’ ;

4

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

94
95 if ($CFG_HMM_TYPE eq ’.semi.’) {
96 $CFG_DIRLABEL = ’semi’ ;
97 # Four stream f e a t u r e s f o r PocketSphinx
98 $CFG_FEATURE = "s2_4x" ;
99 $CFG_NUM_STREAMS = 4 ;

100 $CFG_INITIAL_NUM_DENSITIES = 256 ;
101 $CFG_FINAL_NUM_DENSITIES = 256 ;
102 die "For semi continuous models, the initial and final models have the

same density"

103 if ($CFG_INITIAL_NUM_DENSITIES != $CFG_FINAL_NUM_DENSITIES) ;
104 } elsif ($CFG_HMM_TYPE eq ’.ptm.’) {
105 $CFG_DIRLABEL = ’ptm’ ;
106 # Four stream f e a t u r e s f o r PocketSphinx
107 $CFG_FEATURE = "s2_4x" ;
108 $CFG_NUM_STREAMS = 4 ;
109 $CFG_INITIAL_NUM_DENSITIES = 64 ;
110 $CFG_FINAL_NUM_DENSITIES = 64 ;
111 die "For phonetically tied models, the initial and final models have the

same density"

112 if ($CFG_INITIAL_NUM_DENSITIES != $CFG_FINAL_NUM_DENSITIES) ;
113 } elsif ($CFG_HMM_TYPE eq ’.cont.’) {
114 $CFG_DIRLABEL = ’cont’ ;
115 # S i n g l e stream f e a t u r e s − Sphinx 3
116 $CFG_FEATURE = "1s_c_d_dd" ;
117 $CFG_NUM_STREAMS = 1 ;
118 $CFG_INITIAL_NUM_DENSITIES = 1 ;
119 $CFG_FINAL_NUM_DENSITIES = 4 ;
120 die "The initial has to be less than the final number of densities"

121 if ($CFG_INITIAL_NUM_DENSITIES > $CFG_FINAL_NUM_DENSITIES) ;
122 }
123
124 # (yes /no) Train mult ip le−gauss ian context−independent models (u s e f u l
125 # f o r alignment , use ’ no ’ o therw i se) in the models c r ea ted
126 # s p e c i f i c a l l y f o r f o r c ed al ignment
127 $CFG_FALIGN_CI_MGAU = ’no’ ;
128 # (yes /no) Train mult ip le−gauss ian context−independent models (u s e f u l
129 # f o r alignment , use ’ no ’ o therw i se)
130 $CFG_CI_MGAU = ’no’ ;
131 # Number o f t i e d s t a t e s (senones) to c r e a t e in dec i s i on−t r e e c l u s t e r i n g
132 $CFG_N_TIED_STATES = 25 ;
133 # How many par t s to run Forward−Backward es t imat inon in
134 $CFG_NPART = 2 ;
135
136 # (yes /no) Train a s i n g l e d e c i s i o n t r e e f o r a l l phones (a c t u a l l y one
137 # per s t a t e) (u s e f u l f o r grapheme−based models , use ’ no ’ o therw i se)
138 $CFG_CROSS_PHONE_TREES = ’no’ ;
139
140 # Use fo r ce−a l i gned t r a n s c r i p t s (i f a v a i l a b l e) as input to t r a i n i n g
141 $CFG_FORCEDALIGN = ’no’ ;
142
143 # Use a s p e c i f i c s e t o f models f o r f o r c e al ignment . I f not de f ined ,
144 # context−independent models f o r the cur rent experiment w i l l be used .
145 $CFG_FORCE_ALIGN_MDEF = "$CFG_BASE_DIR/model_architecture/$CFG_EXPTNAME.

falign_ci.mdef" ;
146 if ($CFG_FALIGN_CI_MGAU eq ’yes’) {
147 $CFG_FORCE_ALIGN_MODELDIR = "$CFG_MODEL_DIR/$CFG_EXPTNAME.falign_ci_${

CFG_DIRLABEL}_$CFG_FINAL_NUM_DENSITIES" ;
148 }
149 else {

5

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

150 $CFG_FORCE_ALIGN_MODELDIR = "$CFG_MODEL_DIR/$CFG_EXPTNAME.

falign_ci_$CFG_DIRLABEL" ;
151 }
152
153 # Use a s p e c i f i c d i c t i o n a r y and f i l l e r d i c t i o n a r y f o r f o r c e al ignment .
154 # I f the se are not de f ined , a d i c t i o n a r y and f i l l e r d i c t i o n a r y w i l l be
155 # created from $CFG DICTIONARY and $CFG FILLERDICT, with no i s e words
156 # removed from the f i l l e r d i c t i o n a r y and added to the d i c t i o n a r y (t h i s
157 # i s because the f o r c e al ignment i s not very good at i n s e r t i n g them)
158
159 # $CFG FORCE ALIGN DICTIONARY = ”$ST : : CFG BASE DIR/ fa l ignout$ST : :

CFG EXPTNAME. f a l i g n . d i c t ” ; ;
160 # $CFG FORCE ALIGN FILLERDICT = ”$ST : : CFG BASE DIR/ f a l i g n o u t /$ST : :

CFG EXPTNAME. f a l i g n . f d i c t ” ; ;
161
162 # Use a p a r t i c u l a r beam width f o r f o r c e al ignment . The wider
163 # (i . e . sma l l e r numer i ca l ly) the beam , the fewer s en t ence s w i l l be
164 # r e j e c t e d f o r bad al ignment .
165 $CFG_FORCE_ALIGN_BEAM = 1e−60;
166
167 # Calcu la te an LDA/MLLT transform ?
168 $CFG_LDA_MLLT = ’no’ ;
169 # Dimens iona l i ty o f LDA/MLLT output
170 $CFG_LDA_DIMENSION = 29 ;
171
172 # This i s a c t u a l l y j u s t a d i f f e r e n c e in log space (i t doesn ’ t make
173 # sense otherwise , because d i f f e r e n t f e a t u r e parameters have very
174 # d i f f e r e n t l i k e l i h o o d s)
175 $CFG_CONVERGENCE_RATIO = 0 . 1 ;
176
177 # Queue : : POSIX f o r mu l t ip l e CPUs on a l o c a l machine
178 # Queue : : PBS to use a PBS/TORQUE queue
179 $CFG_QUEUE_TYPE = "Queue::POSIX" ;
180
181 # Name o f queue to use f o r PBS/TORQUE
182 $CFG_QUEUE_NAME = "workq" ;
183
184 # (yes /no) Build que s t i on s f o r d e c i s i o n t r e e c l u s t e r i n g automat i ca l l y
185 $CFG_MAKE_QUESTS = "yes" ;
186 # I f CFG MAKE QUESTS i s yes , que s t i on s are wr i t t en to t h i s f i l e .
187 # I f CFG MAKE QUESTS i s no , que s t i on s are read from t h i s f i l e .
188 $CFG_QUESTION_SET = "${CFG_BASE_DIR}/model_architecture/${CFG_EXPTNAME}.

tree_questions" ;
189 #$CFG QUESTION SET = ”${CFG BASE DIR}/ l i n g u i s t i c q u e s t i o n s ” ;
190
191 $CFG_CP_OPERATION = "${CFG_BASE_DIR}/model_architecture/${CFG_EXPTNAME}.

cpmeanvar" ;
192
193 # This v a r i a b l e has to be de f ined , o therw i se u t i l s . p l w i l l not load .
194 $CFG_DONE = 1 ;
195
196 return 1 ;

Listing 5: Sphinx-3 decoder cfg file

1 # Conf igurat ion s c r i p t f o r sphinx decoder −∗−mode : Perl−∗−
2
3 # Var iab l e s s t a r t i n g with $DEC CFG r e f e r to decoder s p e c i f i c
4 # arguments , those s t a r t i n g with $CFG r e f e r to t r a i n e r arguments ,
5 # some o f them a l s o used by the decoder .
6

6

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

7 $DEC_CFG_VERBOSE = 1 ; # Determines how much goes to the s c r e en .
8
9 # These are f i l l e d in at c o n f i g u r a t i o n time

10 $DEC_CFG_DB_NAME = ’voxforge_en’ ;
11 $DEC_CFG_BASE_DIR = ’/home/andy/TB/backup/projects/my_project/cmusphinx/trunk/

voxforge_en’ ;
12 $DEC_CFG_SPHINXDECODER_DIR = ’../sphinx3’ ;
13 $DEC_CFG_SPHINXTRAIN_CFG = "$DEC_CFG_BASE_DIR/etc/sphinx_train.cfg" ;
14
15 # Name o f the decoding s c r i p t to use (psdecode . p l or s3decode . pl , probably)
16 $DEC_CFG_SCRIPT = ’s3decode.pl’ ;
17
18 require $DEC_CFG_SPHINXTRAIN_CFG ;
19
20 $DEC_CFG_BIN_DIR = "$DEC_CFG_BASE_DIR/bin" ;
21 $DEC_CFG_GIF_DIR = "$DEC_CFG_BASE_DIR/gifs" ;
22 $DEC_CFG_SCRIPT_DIR = "$DEC_CFG_BASE_DIR/scripts_pl" ;
23
24 $DEC_CFG_EXPTNAME = "$CFG_EXPTNAME" ;
25 $DEC_CFG_JOBNAME = "$CFG_EXPTNAME" . "_job" ;
26
27 # Models to use .
28 $DEC_CFG_MODEL_NAME = "$CFG_EXPTNAME.cd_${CFG_DIRLABEL}_${CFG_N_TIED_STATES}" ;
29
30 $DEC_CFG_FEATFILES_DIR = "$DEC_CFG_BASE_DIR/feat" ;
31 $DEC_CFG_FEATFILE_EXTENSION = ’.mfc’ ;
32 $DEC_CFG_VECTOR_LENGTH = $CFG_VECTOR_LENGTH ;
33 $DEC_CFG_AGC = $CFG_AGC ;
34 $DEC_CFG_CMN = $CFG_CMN ;
35 $DEC_CFG_VARNORM = $CFG_VARNORM ;
36
37 $DEC_CFG_QMGR_DIR = "$DEC_CFG_BASE_DIR/qmanager" ;
38 $DEC_CFG_LOG_DIR = "$DEC_CFG_BASE_DIR/logdir" ;
39 $DEC_CFG_MODEL_DIR = "$CFG_MODEL_DIR" ;
40
41 #∗∗∗∗∗∗∗ v a r i a b l e s used in decoding o f wave f i l e s ∗∗∗∗∗∗∗
42 $DEC_CFG_DICTIONARY = "$DEC_CFG_BASE_DIR/etc/$DEC_CFG_DB_NAME.dic" ;
43 $DEC_CFG_FILLERDICT = "$DEC_CFG_BASE_DIR/etc/$DEC_CFG_DB_NAME.filler" ;
44 $DEC_CFG_LISTOFFILES = "$DEC_CFG_BASE_DIR/etc/${DEC_CFG_DB_NAME}.fileids.

train" ;
45 $DEC_CFG_TRANSCRIPTFILE = "$DEC_CFG_BASE_DIR/etc/${DEC_CFG_DB_NAME}.

transcription.train" ;
46 $DEC_CFG_RESULT_DIR = "$DEC_CFG_BASE_DIR/result" ;
47
48 # This v a r i a b l e s , used by the decoder , have to be user de f ined , and
49 # may a f f e c t the decoder output
50
51 $DEC_CFG_LANGUAGEMODEL_DIR = "$DEC_CFG_BASE_DIR/etc" ;
52 $DEC_CFG_LANGUAGEMODEL = "$DEC_CFG_LANGUAGEMODEL_DIR/voxforge_en.lm.DMP" ;
53 $DEC_CFG_LANGUAGEWEIGHT = "10" ;
54 $DEC_CFG_BEAMWIDTH = "1e-80" ;
55 $DEC_CFG_WORDBEAM = "1e-40" ;
56
57 $DEC_CFG_ALIGN = "builtin" ;
58
59 #∗∗∗∗∗∗∗ v a r i a b l e s used in c h a r a c t e r i z i n g models ∗∗∗∗∗∗∗
60
61 $DEC_CFG_HMM_TYPE = $CFG_HMM_TYPE ;
62
63 if (($DEC_CFG_HMM_TYPE ne ".semi.") and ($DEC_CFG_HMM_TYPE ne ".cont.")) {

7

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

64 die "Please choose one CFG_HMM_TYPE out of ’.cont.’ or ’.semi.’, " .
65 "currently $DEC_CFG_HMM_TYPE\n" ;
66 }
67
68 # This comes d i r e c t l y from read ing the code . The f e a t u r e d e f i n i t i o n s
69 # aren ’ re r ep re s ented exac t l y by the same s t r i n g in the t r a i n e r and
70 # the decoder . Therefore , we need to map between them .
71 %feature_type = (
72 ’c/1..L-1/,d/1..L-1/,c/0/d/0/dd/0/,dd/1..L-1/’ => ’s2_4x’ ,
73 ’c/1..L-1/d/1..L-1/c/0/d/0/dd/0/dd/1..L-1/’ => ’s3_1x39’ ,
74 ’c/0..L-1/d/0..L-1/dd/0..L-1/’ => ’1s_c_d_dd’ ,
75 ’c/0..L-1/d/0..L-1/’ => ’cep_dcep’ ,
76 ’c/0..L-1/’ => ’cep’ ,
77 ’c/0..L-1/dd/0..L-1/’ => ’INVALID’ ,
78 ’4s_12c_24d_3p_12dd’ => ’s2_4x’ ,
79 ’1s_12c_12d_3p_12dd’ => ’s3_1x39’ ,
80 ’s2_4x’ => ’s2_4x’ ,
81 ’s3_1x39’ => ’s3_1x39’ ,
82 ’1s_c_d_dd’ => ’1s_c_d_dd’ ,
83 ’1s_c_d_ld_dd’ => ’1s_c_d_ld_dd’ ,
84 ’1s_c_d’ => ’cep_dcep’ ,
85 ’1s_c’ => ’cep’ ,
86 ’1s_c_dd’ => ’INVALID’ ,
87 ’1s_d’ => ’INVALID’ ,
88 ’1s_dd’ => ’INVALID’ ,
89) ;
90
91 $DEC_CFG_FEATURE = "INVALID"

92 unless ((exists $feature_type{$CFG_FEATURE })
93 and ($DEC_CFG_FEATURE = $feature_type{$CFG_FEATURE })) ;
94
95 if ($DEC_CFG_FEATURE eq "INVALID") {
96 die "Feature type used for training , $CFG_FEATURE , cannot be used for decoding

.\n" .
97 "Please use one of 1s_c_d_dd, 1s_c_d, 1s_c, s2_4x, s3_1x39, 1s_c_d_ld_dd\n" ;
98 }
99 $CFG_FEAT_WINDOW | |= 0 ;

100 # Undocumented decoder magic s i n c e SphinxBase may not support −cepwin yet
101 if ($CFG_FEAT_WINDOW) {
102 $DEC_CFG_FEATURE = "$CFG_VECTOR_LENGTH:$CFG_FEAT_WINDOW" ;
103 }
104
105 $DEC_CFG_NPART = 2 ; # Def ine how many p i e c e s to s p l i t decode in
106
107 $DEC_CFG_OKAY_COLOR = ’00D000’ ;
108 $DEC_CFG_WARNING_COLOR = ’555500’ ;
109 $DEC_CFG_ERROR_COLOR = ’DD0000’ ;
110
111 return 1 ;

8

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

