www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



_(@%;
UPPSALA
UNIVERSITET

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besoksadress:
Angstrémlaboratoriet
Lagerhyddsvagen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 — 471 3003

Telefax:
018 — 471 30 00

Hemsida:
http://www.teknat.uu.se/student

www.FirstRanker.com

www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

Chapter 1

Introduction

This bachelor thesis is performed at Enea! and strives to develop a demo appli-
cation to demonstrate the effects of power management (methods to minimize
power consumption) on a computer system.

The thesis is part of the ITEA2? project GEODES? (Global Energy Op-
timization for Distributed Embedded Systems - ITEA2~07013%) that aims at
developing design techniques, embedded software and accompanying tools to
help embedded system lower their power consumption.

1.1 Background

In embedded systems, power consumption is of &oncern and it is of great
value to minimize it. In the GEODES proje@) echniques are developed to
lower power consumption at the cost of leg8reperformance, this is called sys-
tem degradation. This thesis will worl\gédemonstrating the effects of power

management.
X

1.2 Problem Des&é&ion
(&}

The task presented is t@&gn software applications that demonstrates the
effects of power managdmne

t, which is the distribution of power amongst com-
ponents and utilizz system degradation to minimize the total power con-
sumption.

To fulfill thidNssignment, new applications will be developed and then inte-
grated with existing software. Primarily it will be collaborating with a software
application called Power Manager. This application is the software module re-
sponsible for the power management”.

The purpose of the project is divided into two different scenarios; one con-
sists of the monitoring a computer system, the other consists of monitoring
firefighters at an emergency scene.

Thttp://www.enea.com/

2http://www.itea2.org/

3http://geodes.ict.tuwien.ac.at/

4http:/ /www.itea2.org/public/project leaflets/ GEODES profile oct-08.pdf
5For more information about the Power Manager see [2]

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

Monitoring of a Computer System

In this scenario, a user wishes to monitor the effects of power management on a
computer system. By using the computer system monitoring software, the user
can in real time see the current power consumption of different components in
the system.

If the user wishes to change the state (e.g. the desired lifetime) of the
monitored system, certain parameters can be set through an interface, and the
resulting change (e.g. adaption of the power manager) can be observed.

The computer system to be monitored will run Enea’s operating system
OSE (Operating System Embedded)® on a Freescale” i.MX31 ADS board (ab-
breviated MX31), and the computer system monitoring will run Linux on a PC
(regular x86 system).

Monitoring Firefighters at an Emergency Scene

In this scenario, a rescue leader of a fire brigade can use the firefighter monitor
software to monitor a group of firefighters at an emergency scene. With this
software the status of the individual firefighters (e.g. position, outer tempera-
ture, etc.) can be observed. This data is recorded and distributed by a handheld
device carried by each firefighter.

The leader is also able to request a desired lifetime (battery-wise) of each
handheld device. This deadline can be changed during the mission, and the
device will adapt by using power management techniques.

The software aiding the leader to monitor the firefighters will run Linux on
a PC and the handheld devices will run Enea’s &a‘ting system OSE on a
Freescale MX31 board.

O

1.2.1 Purpose Q\‘

e the effects of power management.
show that the lifetime of an embedded

The purpose of this thesis is to demo
It will be done by developing softwa;
system can be prolonged by the system degradation.

During the thesis, there wi be investigation of the needs in a developer’s
toolkit for applications (k&* rs. The results can then help in the design of

the middleware such thal\g can be designed to be easy to use.
*

1.2.2 Meth

The project wil approached using an agile method of software development.
This means that the implementation will begin early (with only a partial design
of the system complete) and there will be continuous evaluation and modification
of the design.

The actual development will consist of "sprints”. A sprint is a period of time
where the focus of work is a few chosen tasks which shall be accomplished before
the end of the sprint. In this project each sprint will last one week.

An agile method has been favored because of the tight time frame and the
problem of anticipating the amount of time each task would take. With this

Shttp:/ /www.enea.com/OSE
“http://www.freescale.com/

(28

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

Chapter 2

Structuring of the
Applications

The structures of the two software applications are very similar. Both scenarios
consist of one part running on a Freescale MX31 board using OSE and the other
on a Linux PC. Despite the similarities, there are a few crucial differences, the
primary being that in the firefighter scenario, multiple firefighters are to be
monitored by a single coordinator.

2.1 Context of the applications

In the problem description, it is stated that t\@plications shall be running
on OSE. This causes that this software musteb&&ritten for OSE, and therefore
can only utilize the functions of OSE. Mo &oeuﬁcally, LINX will be used for
communication and the applications wj written as OSE modules.

2.1.1 OSE Q:b'

OSE is a real-time operatji @atem developed by Enea. It is a widely used
embedded operating sy s?mxmed in a third of all mobile phones sold world-
wide!. An application ap DSE consists of one or several processes, which is the
smallest executing ex

2.1.2 LIN

LINX is a protocol for IPC (Inter-Process Communication) between processes
within the same system and also between processes on different systems. It is the
default TPC used by Enea’s OSE, it also exists as an open source implementation
as LINX for Linux?.

The principle of LINX is to use something called Signals that are sent to
processes, addressed by PIDs. It is an reliable, in-order communication protocol,
which means that all signals sent, are received eventually, and they will be
received in the correct order.

Lhttp://www.enea.com/OSE
2linxdoc/doc/index.html

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

To acquire the PID of a process, to send a signal, a system call named hunt
is used. To hunt, the name (as a string) of the process is passed, and the return
value is the corresponding PID (if found).

The hunt method finds all process on the same computer with no problems,
but if one wants to hunt for a process on another system on needs to set up a
LINX link to the target host. These links can be created automatically by using
a program called linxdisc (LINX discovery daemon). Linxdisc is a background
process that repeatedly broadcasts its existence, and listens for the existence of
other LINX nodes. If it finds other LINX nodes, a link is created automatically.

Using LINX, a process can attach a remote process. Thie means that if the
connection between the local and the attached remote process is lost, LINX will
notify the local process by sending a signal. This feature is used by the Firepad
and the Central applications.

LINX will be used since in OSE it is the default message passing method,
therefore the communication protocols are easily implemented. However, it was
also used as the protocol for communication across the systems (from OSE to
Linux and v. v.). The reason for this is the simplicity of having the same
communication method between all nodes (and not need to bother whether the
target process was on the same system or another).

2.1.3 Power Manager and Power Data

On the MX31 board running OSE, there will exist an application called the
Power Manager. This application is responsible for the power management, and
is the primary thing to be observed. The Power Mangger is communicating with
different power aware components of the computer &cm, called PMCs (Power
Manageable Component), and issuing orders owed power consumption.
It also receives information from these com%n‘ ts, about their current power
consumption. This data (orders and infox@ ion) are to be collected, and are
collectively named Power Data. Q

. (% . .
2.2 Architecture O@Te System Monitor Applica-
tion &\

In the computer syste
first one, called th

monitor scenario, there will be two applications. The
nitor shall be on the MX31 board running OSE. The
second one, call Visualizer will reside on a PC running Linux.

This split isade to reduce the complexity of the applications. By struc-
turing it as two applications, one which focus on monitoring and the other on
visualizing the monitored data, the design conforms to the SRP (Single Respon-
sibility Principle)[4].

The SRP states that every object should do one thing and that thing should
only be done by that object only. By following this principle, the design of
the each modules will be easier. For example if the interface for monitoring
the Power Manager changes, only the Monitor application will have to adapt,
whereas the Visualizer can remain unchanged.

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

2.2.1 Requirements

The primary objective of the Monitor is to survey and collect Power Data from
the Power Manager.

By loading the Monitor application on the board it can utilize OSE’s own
IPC (inter-process communication) for monitoring, and this makes the supervi-
sion of the power management easier. Therefore, the Monitor application will be
running on the monitored board as a single (or several, if parallelism is desired)
of OSE processes.

Since there is no existing functionality in OSE for peeking at memory or
signals passed between other processes, the monitoring will be done by requiring
the Power Manager to explicitly send power data to the Monitor process. This
is the first requirement of the Monitor:

REQ1-1: The Monitor shall survey the Power Manager and collect Power Data.
After the data has been gathered, the Monitor should propagate this to the
Visualizer, where it will be displayed. This is the next requirement of the
application:

REQ1-2: The Monitor shall be able to send Power Data to the Visualizer.

The Visualizers task is to collect the power data and visualize it. Letting it be
run on another computer system makes it possible to monitor a system from a

different location. Also it allows the use of functiong{ihy not yet ported for OSE
(e.g. certain graphics). This can be formulated e first requirement of the
Visualizer application: (J

REQ1-3: The Visualizer shall display &@bwer Data received from the Mon-
itor. Q

(o
It follows from the architectur@&ch that a connection must be established
between the Monitor and t 1sualizer. Since the transmission of data lies
primarily in the interest ! Visualizer, it should be responsible of initiating
the transfer of Power » This is formalized as:

REQ1-4: The ViRlizer shall be able to establish a connection the Monitor.
The most interesting thing to monitor is changes in the power state (e.g. new
demands on required lifetime) of the target system. To initiate such a change, it
is necessary for the application to be able to set some parameters at the Power
Manager. This is most conveniently done from the Visualizer (since that’s where
the output is displayed):

REQ1-5: The Visualizer shall be able to send commands to the monitored
system.

By fulfilling all of these requirements, the application will meet the general task

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

of monitoring and demonstrating the effects of power management on a real
time operating system.

2.2.2 Use Case - Monitoring a Computer System

In the setup depicted in Figure 2.1 the Visualizer shall locate and connect to
the Monitor residing on the board that the user desires to observe. With an
established connection, the Visualizer can request data from the Monitor.

When the Monitor receives a request it will start and forward all monitored
data to the Visualizer. The Monitor itself displays no information on the output
of the board it is running on. Instead all data is presented on the Linux PCs
display by the Visualizer application.

When data is flowing to the Visualizer, it visualizes the data in the form
of tables and diagrams in real-time. Also, the Visualizer has the capability
to set certain parameters at the Monitored host. The first parameter is the
required lifetime, which is the period of time the user wishes the system to
remain running. The second parameter is the batter lifetime, which is the
amount of energy left in the system. The battery lifetime can be set because in
this scenario, the battery is simulated.

With the ability to change these parameters, the user can see how the Power
Manager adapts to changes of the state.

Monitor

Services:
*Publish/Subscribe
*Log data

Figure 2.1: Monitoring a Computer System - Information presented and services
available of different components in this scenario

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

2.3 Architecture of the Firefighter Application

The second scenario consists of a prototype for a central coordinator of firefight-
ers as well as an application called Firepad which will run on handheld devices
carried by the firefighters.

In this context, the division (the same division as in the computer system
monitoring scenario, see Section 2.2) comes naturally, since the whole point of
the application is to have the observer and the firefighters geographically apart
(so the leader can survey all of the firefighters from the same location). Thus
there will be two different applications, one used by the firefighters and one used
by the rescue leader.

The application used on the handheld device carried by the firefighters is
the Firepad application that will in our prototype run on the MX31 board.

The other application used by the rescue leader is called the Central which
will run on the Linux PC.

An important aspect of this scenario, is that the Central shall have as little
knowledge about Power Manager as possible, thus showing that power manage-
ment can be used by applications almost unaware of the underlying software.

2.3.1 Requirements

The purpose of the Central is to survey the firefighters (or more specifically their
Firepads) and display the received information about their current condition
(e.g. position). This is the first requirement of the Central module:

REQ2-1: The Central shall display current conditi@ the connected Firepads.

In this scenario, as firefighters (with their Fy epg,)ds) approaches the emergency
scene, they should automatically be regigt, @ t the Central. This is formulated
as the second requirement: é@

REQ2-2: A Firepad shall be al@mutornatically find the Central and connect
to it. %

N
ngcted, it should regularly send information from its
Ris capability is stated as:

When the Firepad is ¢
sensors to the Centr

REQ2-3: A Fis
the Central.

d shall be able to send data about its current condition to

A major point of this prototype is to show the capabilities of power management,
and this is demonstrated by letting the Central have the capability to request
a required lifetime of a Firepad. This request shall then be forwarded from the
Firepad to the underlying power management software through a general API:

REQ2-4: The Central shall be able to set a required battery lifetime of a
Firepad.

11

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

Firepad

Information:
*Position
*Temperature

Central

Information: Services

«Position «Set required lifetime
*Temperature

*Name

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com

Visualizer Monitor

Subscription Reguest >

< Subscription Reply

Whenever Power Data is
received from Power Manager

< Fower Data

Unsubscription Reguest.
< Unsubscription Reply

Visualizer Monitor

Monitor Power Manager

Find Monitor )
LI | [if found]

> FPower Data

Monitor Power Manager

www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

Power Manager

Command

Power Manager

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

Registration Reguest.
< Registration Reply

Current status
= _..

< Set lifetime

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

MV PC (Linux)

Figure 3.5: Design of the Monitor Module - Showing interactions with the PM
(Power Manager)

Power Data

Power Data

Subscription R t
ubscription Reques Publish Data

Send Reply

Unsubscription Request
Send Reply
v

Figure 3.6: $ Diagram of the Publisher

* &
The most importar %11111’(‘ of the terminal is the possibility to start a
mimicking process t will behave like a Power Manager. This is useful to
demonstrate th cation without an implemented Power Manager.

3.2.3 API

The minimalistic API consists of a single function to log Power Data. It is
used by the Power Manager to log data. This means that it will be sent to a
publisher, if one is running. If there is no publisher running, nothing happens;
this lets the Power Manager to not depend on the Monitor.

The design reduces the coupling between the Monitor application and the
Power Manager. This means that from the perspective of the Power Manager,
very little is known about the Monitor. This means that the Monitor part can
easily be transformed, enhanced or completely rewritten without the need of

change in the Power Manager’s code.

www.FirstRanker.com



www.FirstRanker.com

www.FirstRanker.com

. r I

Main&GUI
«Initialize the application
*Handle the user
interaction

Signal
sReceive signal and do
appropriate action
“Write data signal to log

Animation
*Reads data from log
«Display graphs based

7 1

www.FirstRanker.com




www.FirstRanker.com www.FirstRanker.com

The interaction of the Animation module, the log, the Signal Module and
the GUI is inspired by the Model-View-Controller pattern. The MVC pattern
is used to decouple the handling of input, processing of data and displaying of
output by separating them into a Model (processing of data), a View (displaying
of output) and a Controller (handling of input)[1].

In this application the Model is the log that stores the data, the View is
the diagrams and the Controller is the interactive GUI that accepts input from
a user. By using the MVC pattern, the application is divided into seperate
modules. The complexity of each module is then reduced and the possibilities
to change a single part without affecting the others (for example using another
way of presenting the data) are increased. The design of the modules also strives
to adhere to the SRP (Single Respounsiblity Principle, see Section 2.2).

These patterns made a clear distinction between what modules that were
needed and furthermore this design attempted to make the modules as much as
possible decoupled from each other.

3.3.2 Inter-Application Structure

Figure 3.8 illustrates the sequence of signals sent between the Visualizers mod-

ules and the Monitor when the user triggers a subscription request from the
GUL

1. The Main module sends the Signal module a message describing that it
should send a subscription request to the Monitor.

2. The Signal module sends a subscription requedd
3. The Monitor replies and begins sending ]t)JQr Data.

4. The Monitor continues to send Po@ﬁata until the user unsubscribe

from the Monitor. &

5. When the user requests to t <@acribo, an unsubscription request is sent.
6. The Monitor replies andé:&} irms the unsubscription.
*

Events in these mod@%ﬂ happen asynchronously of each other and thus
parts of the different ig&datles shall run in different threads.

There shall be fiy\hreads in total as shown in Figure 3.9, one in the Main
module to hand GUI, one in the Signal module to listen for signals and
three in the AMWation module to draw the three different graphs. Another
possibility would be to implement the threads as processes, however threads
can easily share memory and they are more lightweight than processes.

3.3.3 Main Module

The Main thread will run as a part of the Main module, it will run the necessary
initialization functions and after that it will only respond to events that occur
in the user interface. It shall be able to propagate commands from the user to
the Signal module.

19

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

Send Subscription Reguest >
Subscription Request >

< Subscription Reply

received from Power Managel

Whenever Power Data is b|
-

- Power Data

Send Unsubscription Reguest.

Unsubscription Reguest.
< Unsubscription Reply

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

HWPC (Linux)

Animation
Thread

Signal hdain
Thread Thread Thread

Thread

Figure 3.9: Threads in the Visualizer Module

When the signal handler receives a data message it writes this to the log which
at some point will be read by the animation thread. In this prototype the
problem of having a max size on the log is not consider. It will be dynamically
growing, and can therefore handle very large amounts of data. But of course the
memory can be full, and the program will then crash. This problem is ignored
to avoid unnecessary complexity in this prototype.

3.3.5 Animation Module
An animation thread is responsible to draw a om@@em will be three of these

threads since the GUI will display three (I1I[< 1({)g1<q>hx An animation thread
will poll a log a number of times every gagNnd to get the values it needs to
display. The third r()quil(\m(\ntREQl%~ Section 2.2.1) is fulfilled by the
animation threads.

The animation thread will \t@@@n the Signal module receives a subscrip-

tion request message and run u receives a request to stop message

.{4

Stmple prototype demonstrating some of the possibilities
Its structure is very simple; it contains a single OSE
avior of the process is depicted in the sequence diagram in

3.4 The Firep

The Firepad will b
of power manag
process. The bé
figure 3.10.

It is stated in requirement REQ2-2(see Section 2.3.1) that the Firepad
shall find the Central automatically, so it starts by searching for the Central
process until it is found. This will be done using LINXs hunt call2.1.2. A
real Firepad would of course start helping the user right away, for example by
showing temperature, position, etc. But in this prototype there is no interest
in running this process unless a Central is there to observe (since no firefighter
is actually using this application).

When the Central has been found, the Firepad sends a registration request,
to apply for observation. This is done so that some vital but static information

21

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

(such as the firefighters name) can be sent to the central only once and need
not be sent with every data message. Since the Firepad is the one locating the
Central, it is obviously more logical to let the Firepad register than the other
way around.

If a reply would not be received, the Firepad goes back to the searching
state (this could happen if the Central just crashed). However, if a reply is
received, data is read from the reply (such as information about surrounding
environment) and stored accordingly. After this, it reaches the "Do Actions”
state which in this prototype scenario equals simulating movement and sensors.
In a real application, it would also check for user input and display output in
various forms.

The next thing to be done is to check for any incoming messages, in this
prototype, the only interesting message is the request of a new lifetime (REQ2-
4, see Section2.3.1. If such a request is received, it has to be propagated to the
Power Manager. This approach has been taken since it is desired that the
Central application has as little knowledge of the Power Manager as possible
(see Section 2.3).

After the actions have been completed, the status of the Firepad might have
been updated (e.g. new position) and therefore it needs to send a data message
to the Central with the new information (as required by REQ2-3)(see Section
2.3.1).

Another approach would have been to create a separate process that would
send an update at a predefined interval (e.g. once every second). The multi-
thread approach will not be taken since it is unnecessary to send data to the

Central if the current condition has not been chang
When the data have been sent, the Firepad heck whether it has lost

connection with the Central, in that case it wi‘@oack to finding it; otherwise

it will loop. .
&
3.5 The Central QO

(%

This component, of the Firefig Q?cenario, the Central, is similar to the Vi-
sualizer application in the ¢ er system monitor scenario (see Section 3.3.
However the main differ that the firefighter Central will have to receive
data from several diffe n} nodes. Furthermore, Firepads needs to register at
the Central instead > Central registering the Firepads.

The fireman I will consist of three modules: the GUI module, the
Drawing modu d the Signal module.

3.5.1 General Outline of the Central

This application will consist of two threads one for the GUI module and one
for the Signal module. The signal thread will wait for signals; if it receives a
register request it will register the Firepad. If it receives an update signal from
a Firepad it shall redraw the map with the new Firepad information.
Updating the displayed information about the firefighters will be driven by
how often the Firepads sends new update information about their current con-
dition. The thread that receives new information will interact with the drawing

22

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

Read data

Hunt for Cantral Do actions

Send Data

Regster Reguest

Still connect
to central ?

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

Wait for signal

Register Connection

signal o & lost signal

Register new Update Firepad

Firepad data and display it Remove Firepad

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

Chapter 4

The Implementation of the
Design

The result of the work consists of the two applications designed. During the
implementation of these several problems arise and were dealt with. One early
decision taken was to use LINX for communication. Here follows first an intro-
duction to LINX, and afterwards the implementation details of each application.

4.1 The Monitor

Implementing the Monitor was straight-forward l@llowing the design (see
Section 3.2). The application consists of two pr es, one called the Publisher
and another one called the Terminal (reprein" g the corresponding modules
in the design).

The Publisher (see Section 3.2.1) \&m practice a big loop with the two
states from the design, using LINX ?§is to do all communication (both with
the Power Manager as well as tlQ; alizer).

The Monitor is designed s that there can only be one subscriber at a
time. There is nothing st&x‘ﬁ it what should happen if a new subscription
request is received, wh Bre already is a subscriber. The decision in the
implementation becamé\to*remove the old subscriber in favor of the new one.
This was the logica ce because if the opposite would be chosen (to keep the
current), a subscyf could "lock up” the Monitor and never let it go.

The Termin ee Section 3.2.2) is also a loop, printing to and reading from
standard input (using standard C I/O-functions). Lastly the APT was very small
and contained no surprises.

4.2 The Visualizer

The GUI was implemented with the Glade! and GTK+2. GTK+ is a graphical
user interface toolkit for creating GUIs for the X Window System.

Lhttp://glade.gnome.org/
2http:/ /www.gtk.org/

26

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

A decision was made to use GTK+ as the library for creating the user
interface in the Visualizer since attempts with Ruby?® and its libraries resulted
in unsatisfactory performance.

Glade is a graphical user interface designer and one of the reasons for choos-
ing Glade is the ease of creating a GUI with pointing and clicking, thus it is
possible to get immediate feedback of how the design looks.

The communication with the Monitor or the Power Manager on the Signal
module was implemented with the help of LINX for the communication. The
Animation module used the PLplot* library to plot the graphs in real-time.
PLPlot was used for the reason that the library is able to plot graphs in real-
time which is the main purpose of this task.

There were a few minor discrepancies between the implementation and the
design in the Visualizer component.

For example the diagram below illustrates the process of beginning subscrib-
ing data from a Monitor. Here the Main Thread would sends a subscription
request to the Monitor process, however when using LINX it is not possible to
send a message to a process with the name only. Thus a hunt call needs to
be made and the exchange of signals differs from the design and became like
shown in Figure 4.1. The Animations threads are not dynamically started when
a Subscription Reply is received because of problem that was encountered.

When starting the animation threads dynamically when a Subscription Re-
ply was received, the signal thread would supposed to receive a subset of all
LINX messages, yet it seemed like it would receive all possible messages thus
creating a race condition of who would receive the stop animating request be-
tween the receive thread and the animation threadaTherefore the animation
threads will be started when the Visualizer comr@ is started.

The sequence diagram illustrates the suc I case from subscribing to
unsubscribing from the Visualizers perspectige,

The first event that is triggered is t E@L user presses a subscribe button,
the corresponding callback function fo button is called and a hunt signal
is dispatched to get the location of Tonitor process. The hunt signal reply
indicates that a Monitor proce und by LINX. A subscription request is
then sent to the demo proce ’Su a reply acknowledgment is received. The
Animations threads reads s% log at a specific interval, the first time noth-
ing is written in the Lo e Signal thread writes data to the Log when it
receives a Data signala\sich contains the data to be written. When the user
presses the unsubscgR®button, a similar sequence to the subscribe button is ex-
ecuted, however ime the address of the Monitor process is known therefore
a unsubscriptiomignal can be sent to it directly.

One of the larger obstacles of the Visualizer was creating the GUIL In the
beginning the graphical user interface was made in Ruby since it is an easy
scripting language and therefore a mock-up of a GUI could be rapidly created.
In addition the animation could be easily implemented since it exist libraries for
drawing graphs to visualize the data. For creating the graphical user interface,
three different GUT toolkits: Shoes, Tk and Ruby-GNOME2 were used.

The major problem was that the Scruffy library used, a library to generate
vector based graphs did not seem to be developed to render graphs in real-

Shttp://www.ruby-lang.org/en/
4http://plplot.sourceforge.net/

27

www.FirstRanker.com



www.FirstRanker.com

www.FirstRanker.com

Hunt Signal

>

Hunt Reply Signal
< 2ply Sigr
Subscription Reguest Signal.

Subscription Reply Signal

< Data Signal

nsubscription Signal >
sUnsubscr iption Reply Signal

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

REQ1-4: The Visualizer shall be able to establish a connection the Monitor.

This is fulfilled by the Visualizer hunting for a process named Monitor. The
Visualizer can then send a subscription request to the Monitor and thus a con-
nection has been initiated.

REQ1-5: The Visualizer shall be able to send commands to the monitored
system.

This requirement is fulfilled by hunting for the Power Manager with the help of
LINX and once the Power Manager has been located, a command can be sent
to it.

REQ2-1: The Central shall display current condition of the connected Firepads.

The Central receives messages from the Firepads, and when an update message
is received the Central will with the Cairo library redraw the representation of
all Firepads. Clicking on a specific Firepad in the Central extra information
about that Firepad will displayed.

REQ2-2: A Firepad shall be able to automatically find the Central and connect
to it.

By using a hunt call, the Firepad searches for a @icaﬂy named process on
a specific host (i.e. a host with a specific nam this implementation. When
found, a registration request (as a LINX signkl» can be sent. By searching for a
specific process on a specific host can se be a problem in a more general
scenario, but in this is prototype it is&)table.

REQ2-3: A Firepad shall be a@'ﬁ) send data about its current condition to

the Central. & Q&@

Is, the data can be sent to the Central after a reg-
as been exchanged. The data is in this case generated
and then sent. In a real application, this data would
from sensors.

With the use of LINX
istration request /repiK
in the Firepad pr
instead be coll

REQ2-4: The Central shall be able to set required battery lifetime of a Firepad.

This requirement is fulfilled by selecting a Firepad in the Central and if clicking
on sends. The Central will send a signal including the required battery lifetime
to the Firepad which will contact the Power Manager to set the lifetime.

31

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

5.2 Power Management on GEODES

Power management can definitely be implemented on a distributed embedded
system, the Firefighter scenario is a working prototype demonstrating this, un-
der the assumption that the Power Manager and the Power Manageable Com-
ponents can be implemented.

In the Firepad, the feature of setting a requested lifetime demonstrates that
Power Management can be hidden below a layer of abstraction. This lets the
application developers to utilize the features of Power Management without
extensive knowledge in the area.

It has also been shown that the Power Management is possible to be de-
ployed on a heterogeneous distributed system. Since in the firefighter use case,
two different kinds of system has participated in the communication. Also, no
assumptions on the underlying hardware or software has been taken from the
Centrals view, only that the specified communication protocol has been imple-
mented.

5.3 Developers’ Toolkit

During the course of this thesis an investigation about what should be included
a Developers’ toolkit from the perspective of an application developer. This
Developers’ toolkit would include among other things an APT to be used by a
developer of applications that could benefit from the use of power management.

A developers’ toolkit should have a well defined interface to an application
that is taking care of the power management featur@ince this seems to be the
easiest way to control the power management. ]@ xample setting a required
lifetime could be done by calling a function Wi@ e desired value.

One problem in the firefighter scenario ‘&nat the fire brigade leader cannot
examine a firefighter’s device to see ho t is required to survive (the leader
can only set this value, not read it his is problematic, since it becomes
impossible for the leader to get a Gé-view of the current situation. Therefore,
it would be a very good functi O-have in a developer’s toolkit.

Also, a function to shut’d ‘69 1 but the necessary functions for a system to
run is also a good features, mobile phone may shutdown everything except
what is needed to make, %mrgency call. This could be generalized such that
a single (or a few) co tents can be prioritized, such that they should be kept
at an higher perfq ce level than the rest of the system.

5.4 Future Work

Since this project lasted only ten weeks, a lot of ideas were either implemented
hastily or not at all. This has led to the existence of some implementation details
of lesser quality; this is also a downside of agile software development. Some of
these rough edges are brought into the light here to explain how things could
have been (or can be done) differently in the future to enhance the application.

32

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

5.4.1 The Monitor

The final version of the Monitor does not implement the publisher/subscriber
pattern completely, but only a part of it. The lacking detail is the fact that the
Monitor only allows one subscriber. In this version it’s not a problem, since the
requirements (REQ1-2, see Section 2.2.1) only asks for the capability of sending
data to the Visualizer. It could definitely be of value to have several Visualizers
monitoring the same node (for example if the Visualizers are in different places
geographically).

A very important flaw in this experiment is that the battery is simulated.
This leads to a problem since that means any examination of the effects of power
management with respect to power drainage, is ultimately based on the quality
of the simulation. In this thesis, such observations has not been done, it has
only examined the effects of state-based situations.

By adding the functionality to read the remaining power from a real battery
would fix this flaw and give new possibilities of observing the effects of power
management.

5.4.2 The Visualizer

In terms of functionality there is no major component that seems necessary to
add to the Visualizer.

However, there are some improvements that could be made to the Visualizer:
making the graphs larger, more fashionable, showing them in a separate window
or add a resizable feature.

5.4.3 The Firepad O®

The main thing to be added to the Fircpadﬁpgﬁcation is some kind of output
that demonstrates the effects of the powgyr; agement on the local hardware. A
prototype OpenGL application was d ed (that would display temperature)
which would be affected by the log wver Manager. This was not used in the
final prototype since the Ope asn’t implemented on the used operating

system.
* &%

eoretical nature in the Firefighter Central application
is an error due te¥Xress amount of data received. The data received from the
Firepads drives t®e animation rate. Thus if the Firepads are too many Firepads
on a map, they could send too much data for the central to process and as a
result may crash. An improvement and solution that could be implemented is
to buffer and filter the data received by the Firepads.

A more extensive expansion of the Central could be to implement an algo-
rithm that controls the firefighters. This would require an elaborate use case (by
adding more parameters to the scenario) to give a computer controlled Central
more input to work on. A possible addition could be requirements of a minimum
number of firefighters at the scene at all times. This would require the Central
to prolong firefighters required lifetime if new firefighters are not coming to the
emergency scene in time.

A problem of most

33

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



www.FirstRanker.com

www.FirstRanker.com

Visualizer [N ]E3
o
2
&
qp\
<0 0S level 05 level 05 leve
Power consumptio Power consumptio Power consumptio
1 2
ave
,,,,,, .
Lifetime = E set )
Battery - E set N
QoS N
Power consumption -
Required lifetime | Power consumption Quality of service level Battery level Timestamp
Autoscroll

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

Visualizer

=3
& & &
5 # &
&° AE &
& & &
25
o
&
<8 QoS level 9 QoS level 3 QoS level 5
3 Power consumption 2 Power consumption 3 Power consumption B8]
nodel subscr :e
4 ot Pl o
Lifetime 2{) )
5 6 omi o)
QoS 1135 e ——

Power consumption 17

Required lifetime Power consumption Quality of service level Battery level Timestamp -
20 17 1135 130 113012 ‘_|

20 17 1134 130 112912
20 17 1133 130 112812
20 17 1132 130 112712
eyl 20 17 1131 130 112611
20 17 1130 200 112533
20 17 1129 200 112433
20 17 1128 200 112333
20 17 1127 200 112233
n . 1106 0n 119122

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

Appendix B

Manual for Firefighter
Central

Central

Figure B.1: Firefighter Central Screenshot

Firepad represented by a blue dot with a ring around it. A green ring (3)
represents the Firepad selected and its data is show to the left of the map. A
red ring (2) around the Firepad represents a Firepad that is not selected and
thus his data is not shown anywhere except the graphical representation of his
current coordinates.

The red rectangles represent a temperature and which scale is shown to the
right.

To set a new required lifetime of the selected Firepad:

38

www.FirstRanker.com



www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com



