
www.F
irs

tR
an

ke
r.c

om

IT 10 029

Examensarbete 15 hp
Juni 2010

Demonstrating the Effects of
Power Management on a Real-Time
Operating System

Peter Backeman & Erik Gustafsson

Institutionen för informationsteknologi
Department of Information Technology

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Demonstrating the Effects of Power Management on a
Real-Time Operating System

Peter Backeman & Erik Gustafsson

This thesis is part of the GEODES project, dealing with the issues of power
optimization, e.g. how to make a systems lifetime longer, at the cost of the quality of
the performance, this is called system degradation.

The objective for this project was develop an application to monitor and visualize the
effects of power management (controlled system degradation to minimize power
consumption). With such software it is possible to demonstrate the possibilities of so
called energy aware systems.

During the project two scenarios were investigated and implemented, one is a simple
state-based monitor. This monitor application can observe and visualize the effects of
power management on a computer system. It shows that by utilizing system
degradation, the lifetime of a system can be prolonged.

The other scenario consists of a prototype for a firefighter coordinator application. It
allows a rescue leader to observe firefighters at an emergency scene. This application
can interact with the power management, by requesting a desired lifetime of a
hand-held device carried by the firefighter. This shows that these techniques can be
utilized without knowledge of the underlying power management software.

Tryckt av: Reprocentralen ITC
IT 10 029
Examinator: Anders Jansson
Ämnesgranskare: Karl Marklund
Handledare: Barbro Claesson & Detlef Scholle

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Sammanfattning

Detta examensarbete är en del i GEODES-projektet, som arbetar med energiop-
timering, t.ex. hur man får ett inbyggt systems batteri att leva längre. Detta kan
göras på kostnad av kvaliteten av prestandad, det kallas för systemdegradering.

Målet med detta projekt var att utveckla en applikation för att monitorerea
och visualisera e�ekterna av energiförvaltning (kontrollerad systemdegradering
för att minimera energikonsumption). Med sådan mjukvara är det möjligt att
demonstrera möjligheterna med s.k. energimedvetna system.

Under detta projekt så var två scenarion undersökta och implementerade.
Det ena scenariot var en simpel monitor och det andra var en prototyp för en
brandmanskoordineringsapplikation. Båda applikationerna utnyttjar energiför-
valtning och kan visualisera resultaten.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

List of Figures

2.1 Monitoring a Computer System - Information presented and ser-
vices available of di�erent components in this scenario 10

2.2 Monitoring Fire�ghters - In this scenario, the battery lifetime
cannot be set, since that is not a realistic feature 12

3.1 Subscription Protocol . 14
3.2 Logging Protocol . 14
3.3 Commands Protocol . 15
3.4 Registration Protocol . 16
3.5 Design of the Monitor Module - Showing interactions with the

PM (Power Manager) . 17
3.6 State Diagram of the Publisher 17
3.7 Structure of the Visualizer Module 18
3.8 Inter-Application Communication 20
3.9 Threads in the Visualizer Module 21
3.10 Flow of the Firepad Program . 23
3.11 Flow of the Fire�ghter Central Module 24

4.1 Actual Signal Sending . 28

A.1 Visualizer in Action . 36
A.2 Subscribing a node . 37

B.1 Fire�ghter Central Screenshot . 38

1

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Terms and Abbreviations

Term/Abbreviation Description
GEODES Global Energy Optimization for Distributed Embedded Systems
LINX An inter-process and inter-system communication library for OSE and Linux
MVC Model-View-Controller
OSE Operating System Embedded
Power Data Data that contains information about power management
Power Manager Software that performs local power management on a computer system
Power Management Management of power, dynamically adjusting components power consumption
SRP Single Responsibility Principle

Table 1: List of Terms and Abbreviations

2

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Contents

1 Introduction 4

1.1 Background . 4
1.2 Problem Description . 4

2 Structuring of the Applications 7

2.1 Context of the applications . 7
2.2 Architecture of the System Monitor Application 8
2.3 Architecture of the Fire�ghter Application 11

3 The Design of the Software 13

3.1 Protocols . 13
3.2 The Monitor . 15
3.3 The Visualizer . 18
3.4 The Firepad . 21
3.5 The Central . 22
3.6 Summary of Ful�lled Requirements 25

4 The Implementation of the Design 26

4.1 The Monitor . 26
4.2 The Visualizer . 26
4.3 The Firepad . 28
4.4 The Central . 29

5 Conclusion 30

5.1 Review of Requirements . 30
5.2 Power Management on GEODES 32
5.3 Developers' Toolkit . 32
5.4 Future Work . 32

A Manual for Visualizer 36

B Manual for Fire�ghter Central 38

3

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Chapter 1

Introduction

This bachelor thesis is performed at Enea1 and strives to develop a demo appli-
cation to demonstrate the e�ects of power management (methods to minimize
power consumption) on a computer system.

The thesis is part of the ITEA22 project GEODES3 (Global Energy Op-
timization for Distributed Embedded Systems - ITEA2�070134) that aims at
developing design techniques, embedded software and accompanying tools to
help embedded system lower their power consumption.

1.1 Background

In embedded systems, power consumption is of great concern and it is of great
value to minimize it. In the GEODES project, techniques are developed to
lower power consumption at the cost of lesser performance, this is called sys-
tem degradation. This thesis will work on demonstrating the e�ects of power
management.

1.2 Problem Description

The task presented is to design software applications that demonstrates the
e�ects of power management, which is the distribution of power amongst com-
ponents and utilization system degradation to minimize the total power con-
sumption.

To ful�ll this assignment, new applications will be developed and then inte-
grated with existing software. Primarily it will be collaborating with a software
application called Power Manager. This application is the software module re-
sponsible for the power management5.

The purpose of the project is divided into two di�erent scenarios; one con-
sists of the monitoring a computer system, the other consists of monitoring
�re�ghters at an emergency scene.

1http://www.enea.com/
2http://www.itea2.org/
3http://geodes.ict.tuwien.ac.at/
4http://www.itea2.org/public/project_lea�ets/GEODES_pro�le_oct-08.pdf
5For more information about the Power Manager see [2]

4

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Monitoring of a Computer System

In this scenario, a user wishes to monitor the e�ects of power management on a
computer system. By using the computer system monitoring software, the user
can in real time see the current power consumption of di�erent components in
the system.

If the user wishes to change the state (e.g. the desired lifetime) of the
monitored system, certain parameters can be set through an interface, and the
resulting change (e.g. adaption of the power manager) can be observed.

The computer system to be monitored will run Enea's operating system
OSE (Operating System Embedded)6 on a Freescale7 i.MX31 ADS board (ab-
breviated MX31), and the computer system monitoring will run Linux on a PC
(regular x86 system).

Monitoring Fire�ghters at an Emergency Scene

In this scenario, a rescue leader of a �re brigade can use the �re�ghter monitor
software to monitor a group of �re�ghters at an emergency scene. With this
software the status of the individual �re�ghters (e.g. position, outer tempera-
ture, etc.) can be observed. This data is recorded and distributed by a handheld
device carried by each �re�ghter.

The leader is also able to request a desired lifetime (battery-wise) of each
handheld device. This deadline can be changed during the mission, and the
device will adapt by using power management techniques.

The software aiding the leader to monitor the �re�ghters will run Linux on
a PC and the handheld devices will run Enea's operating system OSE on a
Freescale MX31 board.

1.2.1 Purpose

The purpose of this thesis is to demonstrate the e�ects of power management.
It will be done by developing software to show that the lifetime of an embedded
system can be prolonged by the use of system degradation.

During the thesis, there will also be investigation of the needs in a developer's
toolkit for applications developers. The results can then help in the design of
the middleware such that it can be designed to be easy to use.

1.2.2 Method

The project will be approached using an agile method of software development.
This means that the implementation will begin early (with only a partial design
of the system complete) and there will be continuous evaluation and modi�cation
of the design.

The actual development will consist of �sprints�. A sprint is a period of time
where the focus of work is a few chosen tasks which shall be accomplished before
the end of the sprint. In this project each sprint will last one week.

An agile method has been favored because of the tight time frame and the
problem of anticipating the amount of time each task would take. With this

6http://www.enea.com/OSE
7http://www.freescale.com/

5

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

method, the design (and amount of functionality) can easily be adapted as the
project progresses and adjusted accordingly[4].

1.2.3 Delimitations

The project will be performed during a time frame of ten weeks. Since an agile
approach of development is used there will be only a short draft of the design
in the beginning (about two weeks) and afterwars a series of phases consisting
of iterative implementation and elaboration of the design.

The environment consists in both scenarios of running one part of the soft-
ware on a multimedia Freescale MX31 ADS board, and the other on a Desktop
PC. The MX31 shall be running Enea's real time operating system OSE and
the PC shall be running a Linux distribution. The communication between the
applications across the systems will be done via Ethernet.

6

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Chapter 2

Structuring of the

Applications

The structures of the two software applications are very similar. Both scenarios
consist of one part running on a Freescale MX31 board using OSE and the other
on a Linux PC. Despite the similarities, there are a few crucial di�erences, the
primary being that in the �re�ghter scenario, multiple �re�ghters are to be
monitored by a single coordinator.

2.1 Context of the applications

In the problem description, it is stated that two applications shall be running
on OSE. This causes that this software must be written for OSE, and therefore
can only utilize the functions of OSE. More speci�cally, LINX will be used for
communication and the applications will be written as OSE modules.

2.1.1 OSE

OSE is a real-time operating system developed by Enea. It is a widely used
embedded operating system, used in a third of all mobile phones sold world-
wide1. An application on OSE consists of one or several processes, which is the
smallest executing entity.

2.1.2 LINX

LINX is a protocol for IPC (Inter-Process Communication) between processes
within the same system and also between processes on di�erent systems. It is the
default IPC used by Enea's OSE, it also exists as an open source implementation
as LINX for Linux2.

The principle of LINX is to use something called Signals that are sent to
processes, addressed by PIDs. It is an reliable, in-order communication protocol,
which means that all signals sent, are received eventually, and they will be
received in the correct order.

1http://www.enea.com/OSE
2linxdoc/doc/index.html

7

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

To acquire the PID of a process, to send a signal, a system call named hunt

is used. To hunt, the name (as a string) of the process is passed, and the return
value is the corresponding PID (if found).

The hunt method �nds all process on the same computer with no problems,
but if one wants to hunt for a process on another system on needs to set up a
LINX link to the target host. These links can be created automatically by using
a program called linxdisc (LINX discovery daemon). Linxdisc is a background
process that repeatedly broadcasts its existence, and listens for the existence of
other LINX nodes. If it �nds other LINX nodes, a link is created automatically.

Using LINX, a process can attach a remote process. Thie means that if the
connection between the local and the attached remote process is lost, LINX will
notify the local process by sending a signal. This feature is used by the Firepad
and the Central applications.

LINX will be used since in OSE it is the default message passing method,
therefore the communication protocols are easily implemented. However, it was
also used as the protocol for communication across the systems (from OSE to
Linux and v. v.). The reason for this is the simplicity of having the same
communication method between all nodes (and not need to bother whether the
target process was on the same system or another).

2.1.3 Power Manager and Power Data

On the MX31 board running OSE, there will exist an application called the
Power Manager. This application is responsible for the power management, and
is the primary thing to be observed. The Power Manager is communicating with
di�erent power aware components of the computer system, called PMCs (Power
Manageable Component), and issuing orders of allowed power consumption.
It also receives information from these components, about their current power
consumption. This data (orders and information) are to be collected, and are
collectively named Power Data.

2.2 Architecture of the System Monitor Applica-

tion

In the computer system monitor scenario, there will be two applications. The
�rst one, called the Monitor shall be on the MX31 board running OSE. The
second one, called the Visualizer will reside on a PC running Linux.

This split is made to reduce the complexity of the applications. By struc-
turing it as two applications, one which focus on monitoring and the other on
visualizing the monitored data, the design conforms to the SRP (Single Respon-
sibility Principle)[4].

The SRP states that every object should do one thing and that thing should
only be done by that object only. By following this principle, the design of
the each modules will be easier. For example if the interface for monitoring
the Power Manager changes, only the Monitor application will have to adapt,
whereas the Visualizer can remain unchanged.

8

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

2.2.1 Requirements

The primary objective of the Monitor is to survey and collect Power Data from
the Power Manager.

By loading the Monitor application on the board it can utilize OSE's own
IPC (inter-process communication) for monitoring, and this makes the supervi-
sion of the power management easier. Therefore, the Monitor application will be
running on the monitored board as a single (or several, if parallelism is desired)
of OSE processes.

Since there is no existing functionality in OSE for peeking at memory or
signals passed between other processes, the monitoring will be done by requiring
the Power Manager to explicitly send power data to the Monitor process. This
is the �rst requirement of the Monitor:

REQ1-1: The Monitor shall survey the Power Manager and collect Power Data.

After the data has been gathered, the Monitor should propagate this to the
Visualizer, where it will be displayed. This is the next requirement of the
application:

REQ1-2: The Monitor shall be able to send Power Data to the Visualizer.

The Visualizers task is to collect the power data and visualize it. Letting it be
run on another computer system makes it possible to monitor a system from a
di�erent location. Also it allows the use of functionality not yet ported for OSE
(e.g. certain graphics). This can be formulated as the �rst requirement of the
Visualizer application:

REQ1-3: The Visualizer shall display the Power Data received from the Mon-
itor.

It follows from the architecture sketch that a connection must be established
between the Monitor and the Visualizer. Since the transmission of data lies
primarily in the interest of the Visualizer, it should be responsible of initiating
the transfer of Power Data. This is formalized as:

REQ1-4: The Visualizer shall be able to establish a connection the Monitor.

The most interesting thing to monitor is changes in the power state (e.g. new
demands on required lifetime) of the target system. To initiate such a change, it
is necessary for the application to be able to set some parameters at the Power
Manager. This is most conveniently done from the Visualizer (since that's where
the output is displayed):

REQ1-5: The Visualizer shall be able to send commands to the monitored
system.

By ful�lling all of these requirements, the application will meet the general task

9

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

of monitoring and demonstrating the e�ects of power management on a real
time operating system.

2.2.2 Use Case - Monitoring a Computer System

In the setup depicted in Figure 2.1 the Visualizer shall locate and connect to
the Monitor residing on the board that the user desires to observe. With an
established connection, the Visualizer can request data from the Monitor.

When the Monitor receives a request it will start and forward all monitored
data to the Visualizer. The Monitor itself displays no information on the output
of the board it is running on. Instead all data is presented on the Linux PC`s
display by the Visualizer application.

When data is �owing to the Visualizer, it visualizes the data in the form
of tables and diagrams in real-time. Also, the Visualizer has the capability
to set certain parameters at the Monitored host. The �rst parameter is the
required lifetime, which is the period of time the user wishes the system to
remain running. The second parameter is the batter lifetime, which is the
amount of energy left in the system. The battery lifetime can be set because in
this scenario, the battery is simulated.

With the ability to change these parameters, the user can see how the Power
Manager adapts to changes of the state.

Figure 2.1: Monitoring a Computer System - Information presented and services
available of di�erent components in this scenario

10

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

2.3 Architecture of the Fire�ghter Application

The second scenario consists of a prototype for a central coordinator of �re�ght-
ers as well as an application called Firepad which will run on handheld devices
carried by the �re�ghters.

In this context, the division (the same division as in the computer system
monitoring scenario, see Section 2.2) comes naturally, since the whole point of
the application is to have the observer and the �re�ghters geographically apart
(so the leader can survey all of the �re�ghters from the same location). Thus
there will be two di�erent applications, one used by the �re�ghters and one used
by the rescue leader.

The application used on the handheld device carried by the �re�ghters is
the Firepad application that will in our prototype run on the MX31 board.

The other application used by the rescue leader is called the Central which
will run on the Linux PC.

An important aspect of this scenario, is that the Central shall have as little
knowledge about Power Manager as possible, thus showing that power manage-
ment can be used by applications almost unaware of the underlying software.

2.3.1 Requirements

The purpose of the Central is to survey the �re�ghters (or more speci�cally their
Firepads) and display the received information about their current condition
(e.g. position). This is the �rst requirement of the Central module:

REQ2-1: The Central shall display current condition of the connected Firepads.

In this scenario, as �re�ghters (with their Firepads) approaches the emergency
scene, they should automatically be registered at the Central. This is formulated
as the second requirement:

REQ2-2: A Firepad shall be able to automatically �nd the Central and connect
to it.

When the Firepad is connected, it should regularly send information from its
sensors to the Central. This capability is stated as:

REQ2-3: A Firepad shall be able to send data about its current condition to
the Central.

A major point of this prototype is to show the capabilities of power management,
and this is demonstrated by letting the Central have the capability to request
a required lifetime of a Firepad. This request shall then be forwarded from the
Firepad to the underlying power management software through a general API:

REQ2-4: The Central shall be able to set a required battery lifetime of a
Firepad.

11

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

If these requirements are met, the �re�ghter application will demonstrate the
ability to utilize power management without having a deep knowledge of the
underlying power management software.

2.3.2 Use Case - Monitoring Fire�ghters

Figure 2.2 shows a typical use case scenario. In this setup there are three
�re�ghters out in the �eld, each one carrying a Firepad. There is also a Central
surveying an emergency scene. Whenever a �re�ghter enters the emergency
scene, his or hers Firepad registers itself at the central.

After the registration is done, the Firepads sends various data including
current position and temperature to the Central, which collects this and displays
it on a screen. The coordinator (using the Central application) can monitor this
and take proper action.

The coordinator also has the capability to use services of the Central soft-
ware, which includes setting required lifetime of a Firepad (for example if the
circumstances require the �re�ghter to stay on �eld for an extended period of
time).

Figure 2.2: Monitoring Fire�ghters - In this scenario, the battery lifetime cannot
be set, since that is not a realistic feature

12

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Chapter 3

The Design of the Software

The software applications have been designed with the requirements in mind,
making sure they are ful�lled. First the computer system monitor application
was designed, and afterwards the �re�ghter application. Much of the design
of the latter application resembles the design of the �rst. The design of the
applications will be presented in the same order as they were written, but �rst
follows an overview of the protocols used.

3.1 Protocols

The developed applications utilize a number of di�erent protocols for commu-
nicating commands and data. Here is a presentation of the protocols for each
scenario.

3.1.1 Protocols in the Monitor Visualizer Scenario

In the Monitor � Visualizer scenario, there are basically three kinds of commu-
nication:

Client Server Type
Visualizer Monitor Subscriptions
Power Manager Monitor Logging
Visualizer Power Manager Commands

Table 3.1: Protocols used in the Computer System Monitoring scenario

Monitor Visualizer, Subscriptions

The message passing between Visualizer and Monitor is based on the Pub-
lish/Subscribe design pattern (also known as the Observer Pattern[3]). This
means that the Visualizer subscribes for data from the Monitor.

As seen in �gure 3.1, the whole process begins with the Visualizer sending
a subscription request to the Monitor, who acknowledges it with a reply. After

13

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

this initialization, the Monitor will keep sending data to the Visualizer when-
ever an update is received from the Power Manager. This will loop until an
unsubscription signal is sent.

Figure 3.1: Subscription Protocol

Power Manager Monitor, Logging

Whenever the Power Manager has an update in its status, it will log this to the
Monitor if it exists. So this protocol is very rudimentary and consists only of
a check if the Monitor process can be found, and a simple data signal. This is
illustrated in Figure 3.2.

Figure 3.2: Logging Protocol

14

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Visualizer Power Manager, Commands

The Visualizer can send two types of commands to the Power Manager: set
a new required lifetime for the battery on the monitored node to last and set
the power level of the simulated battery. There is no acknowledgement reply in
Figure 3.3 since LINX is a reliable protocol. The same reasoning can be applied
to the communication regarding setting the power level of the simulated battery.

Figure 3.3: Commands Protocol

3.1.2 Firepad Central

In the Firepad � Central scenario, the only communication is the messages sent
between the Firepad and the Central.

Firepad - Central, Register

Whenever a Firepad is started, it searches for the Central and registers itself.
After receiving an acknowledgement, it starts sending information about its
current condition. During these updates, the Firepad also listens for messages
from the Central that request a new lifetime. This is depicted in Figure 3.4.

3.2 The Monitor

The monitor module will consist of three parts as shown in Figure 3.5. The parts
will be implemented as two di�erent processes and a minimal API. These parts
are the publisher, the terminal and the log API. The reason for this division of
processes is to follow the SRP (Single Responsiblity Principle, see Section 2.2).
The two responsibility principles divided here are:

� Collecting power data (REQ1-1)

� Send power data to Visualizer (REQ1-2)

The API is designed to hide the inner workings of the Monitor from the Power
Manager. In this way, the implementation of the Power Manager is little a�ected
by the progress of the Monitor.

15

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Figure 3.4: Registration Protocol

3.2.1 Publisher

The publisher is a process which main responsibility is to forward logged data,
from a publisher, to a subscriber. It has two distinct states as shown in Fig-
ure 3.6.

The Publisher starts in the Waiting state, where it waits for a subscriber to
request a data subscription (which would be the Visualizer). When a subscriber
has applied, the publisher goes to the Publishing state and waits for data to be
logged (from a Power Manager).

From this point and on, whenever data is logged it will be forwarded through
the publisher to the subscriber. The reason for this middleman is that data can
be sent from the Power Manager on the board to the Visualizer, while the
complexity in establishing connections can be moved from the Power Manager
to the Publisher.

The subscriber can cancel this subscription of data by sending a special
unsubscription signal to the publisher process. When such a signal is received,
the publisher process will restart and wait until a new subscriber requests a
subscription.

Observe that while in the Waiting state, any power data that might be sent
to the publisher will be thrown away. This design choice was motivated due to
the interest lies in live data, and therefore bu�ering it is of no concern.

3.2.2 Terminal

The terminal is a simple interface for a user to edit con�gurations of the Monitor
application (for example for debugging). Nearly all user interaction with the
Monitor will be done via Command messages sent from the Visualizer.

16

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Figure 3.5: Design of the Monitor Module - Showing interactions with the PM
(Power Manager)

Figure 3.6: State Diagram of the Publisher

The most important feature of the terminal is the possibility to start a
mimicking process that will behave like a Power Manager. This is useful to
demonstrate the application without an implemented Power Manager.

3.2.3 API

The minimalistic API consists of a single function to log Power Data. It is
used by the Power Manager to log data. This means that it will be sent to a
publisher, if one is running. If there is no publisher running, nothing happens;
this lets the Power Manager to not depend on the Monitor.

The design reduces the coupling between the Monitor application and the
Power Manager. This means that from the perspective of the Power Manager,
very little is known about the Monitor. This means that the Monitor part can
easily be transformed, enhanced or completely rewritten without the need of
change in the Power Manager's code.

17

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3.3 The Visualizer

The Visualizer process is responsible of visualizing the data received from the
Monitor. The Visualizer consists of three modules; these are the Main module,
Signal module and the Animation module. The Visualizer will present the
individual power consumption of up to three di�erent PMCs (Power Manageable
Components) of the monitored computer system. If the data of more than three
PMCs are received, three components will be picked arbitrarily and visualized.
This design choice has been made since during this thesis, there existed no more
than three implemented PMCs.

3.3.1 Intra-Application Structure

Figure 3.7 shows the general outline of how the modules in the Visualizer interact
with each other, the Power Manager and the Monitor, where the latter two both
resides on the node monitored.

Figure 3.7: Structure of the Visualizer Module

The Main thread will be responsible of handling the user interaction with
the GUI by responding to events triggered by the GUI and delegate the respon-
sibility of the sending appropriate signals to the Signal module. The Signal
module will in its turn send the corresponding signal to the node.

The Signal module will receive every signal of Power Data from the Monitor
and write it to the log. The animation threads will later read from the log and
visualize the data with diagrams. Also, the Signal thread may have to trigger
a change in the GUI (for example disabling a button) and therefore it needs to
be able send requests to the Main module.

18

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

The interaction of the Animation module, the log, the Signal Module and
the GUI is inspired by the Model-View-Controller pattern. The MVC pattern
is used to decouple the handling of input, processing of data and displaying of
output by separating them into a Model (processing of data), a View (displaying
of output) and a Controller (handling of input)[1].

In this application the Model is the log that stores the data, the View is
the diagrams and the Controller is the interactive GUI that accepts input from
a user. By using the MVC pattern, the application is divided into seperate
modules. The complexity of each module is then reduced and the possibilities
to change a single part without a�ecting the others (for example using another
way of presenting the data) are increased. The design of the modules also strives
to adhere to the SRP (Single Responsiblity Principle, see Section 2.2).

These patterns made a clear distinction between what modules that were
needed and furthermore this design attempted to make the modules as much as
possible decoupled from each other.

3.3.2 Inter-Application Structure

Figure 3.8 illustrates the sequence of signals sent between the Visualizers mod-
ules and the Monitor when the user triggers a subscription request from the
GUI:

1. The Main module sends the Signal module a message describing that it
should send a subscription request to the Monitor.

2. The Signal module sends a subscription request.

3. The Monitor replies and begins sending Power Data.

4. The Monitor continues to send Power Data until the user unsubscribe
from the Monitor.

5. When the user requests to unsubscribe, an unsubscription request is sent.

6. The Monitor replies and con�rms the unsubscription.

Events in these modules will happen asynchronously of each other and thus
parts of the di�erent modules shall run in di�erent threads.

There shall be �ve threads in total as shown in Figure 3.9, one in the Main
module to handle the GUI, one in the Signal module to listen for signals and
three in the Animation module to draw the three di�erent graphs. Another
possibility would be to implement the threads as processes, however threads
can easily share memory and they are more lightweight than processes.

3.3.3 Main Module

The Main thread will run as a part of the Main module, it will run the necessary
initialization functions and after that it will only respond to events that occur
in the user interface. It shall be able to propagate commands from the user to
the Signal module.

19

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Figure 3.8: Inter-Application Communication

3.3.4 Signal Module

The Signal thread will be a part of the Signal module and it will be signal-
driven. When a signal arrives, the corresponding action for that signal will be
taken. This process will be repeatedly inde�nitely. This thread will ful�ll a part
of REQ1-2 (see Section 2.2.1) since if the Monitor shall be able to send data
to the Visualizer, the Visualizer must consequently be able to receive data from
the monitor and thus ful�ll a part of the requirement.

The Signal Module shall also be able to send commands to the Power Man-
ager, to set either lifetime or battery level of the node. This will be initiated by
a user and the GUI module will call the Signal module which will contact the
Power Manager. This is a part of the requirement REQ1-5(see Section 2.2.1).

There will be three types of signals that are received or sent: subscription
or unsubscription request, set new battery level/lifetime and a data signal con-
taining the Power Data collected at a node.

A subscription request will ask the Monitor to start sending the data it super-
vises. This ful�lls REQ1-4(see Section 2.2.1 by establishing the subscription.
An unsubscription request will request the Monitor to stop sending data.

The set lifetime signal will be sent to the Power Manager which should
instruct the device to last the required time. Any value given as input to
the Visualizer will be propagated to the Power Manager, even if it would be
an unreasonable amount of time. The result of the request depends on the
implementation of the Power Manager.

The battery is simulated, therefore a signal to set a new battery level can
exist, and this will tell the simulator to adjust to the given power. The reason
for a simulated battery is that during the time of the project, the used hardware
did not have an actual battery.

The data signal contains Power Data collected at the monitored system.

20

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Figure 3.9: Threads in the Visualizer Module

When the signal handler receives a data message it writes this to the log which
at some point will be read by the animation thread. In this prototype the
problem of having a max size on the log is not consider. It will be dynamically
growing, and can therefore handle very large amounts of data. But of course the
memory can be full, and the program will then crash. This problem is ignored
to avoid unnecessary complexity in this prototype.

3.3.5 Animation Module

An animation thread is responsible to draw a graph; there will be three of these
threads since the GUI will display three di�erent graphs. An animation thread
will poll a log a number of times every second to get the values it needs to
display. The third requirementREQ1-3(see Section 2.2.1) is ful�lled by the
animation threads.

The animation thread will start when the Signal module receives a subscrip-
tion request message and run until it receives a request to stop message

3.4 The Firepad

The Firepad will be a simple prototype demonstrating some of the possibilities
of power management. Its structure is very simple; it contains a single OSE
process. The behavior of the process is depicted in the sequence diagram in
�gure 3.10.

It is stated in requirement REQ2-2(see Section 2.3.1) that the Firepad
shall �nd the Central automatically, so it starts by searching for the Central
process until it is found. This will be done using LINXs hunt call2.1.2. A
real Firepad would of course start helping the user right away, for example by
showing temperature, position, etc. But in this prototype there is no interest
in running this process unless a Central is there to observe (since no �re�ghter
is actually using this application).

When the Central has been found, the Firepad sends a registration request,
to apply for observation. This is done so that some vital but static information

21

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

(such as the �re�ghters name) can be sent to the central only once and need
not be sent with every data message. Since the Firepad is the one locating the
Central, it is obviously more logical to let the Firepad register than the other
way around.

If a reply would not be received, the Firepad goes back to the searching
state (this could happen if the Central just crashed). However, if a reply is
received, data is read from the reply (such as information about surrounding
environment) and stored accordingly. After this, it reaches the �Do Actions�
state which in this prototype scenario equals simulating movement and sensors.
In a real application, it would also check for user input and display output in
various forms.

The next thing to be done is to check for any incoming messages, in this
prototype, the only interesting message is the request of a new lifetime (REQ2-
4, see Section2.3.1. If such a request is received, it has to be propagated to the
Power Manager. This approach has been taken since it is desired that the
Central application has as little knowledge of the Power Manager as possible
(see Section 2.3).

After the actions have been completed, the status of the Firepad might have
been updated (e.g. new position) and therefore it needs to send a data message
to the Central with the new information (as required by REQ2-3)(see Section
2.3.1).

Another approach would have been to create a separate process that would
send an update at a prede�ned interval (e.g. once every second). The multi-
thread approach will not be taken since it is unnecessary to send data to the
Central if the current condition has not been changed.

When the data have been sent, the Firepad will check whether it has lost
connection with the Central, in that case it will go back to �nding it; otherwise
it will loop.

3.5 The Central

This component of the Fire�ghter scenario, the Central, is similar to the Vi-
sualizer application in the computer system monitor scenario (see Section 3.3.
However the main di�erence is that the �re�ghter Central will have to receive
data from several di�erent nodes. Furthermore, Firepads needs to register at
the Central instead of the Central registering the Firepads.

The �reman central will consist of three modules: the GUI module, the
Drawing module, and the Signal module.

3.5.1 General Outline of the Central

This application will consist of two threads one for the GUI module and one
for the Signal module. The signal thread will wait for signals; if it receives a
register request it will register the Firepad. If it receives an update signal from
a Firepad it shall redraw the map with the new Firepad information.

Updating the displayed information about the �re�ghters will be driven by
how often the Firepads sends new update information about their current con-
dition. The thread that receives new information will interact with the drawing

22

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om
Figure 3.10: Flow of the Firepad Program

module to display the updates every time it receives an update from a registered
Firepad. Figure 3.11 illustrates this sequence.

The reason for choosing an event-driven update of the drawing module (in-
stead of a timer-based) is to reduce complexity. With this design, there is no
need to implement an extra thread that keeps track of time. Also, there will be
no unnecessary redrawing, the only problem would be if there became to much
redrawing. But in this prototype, the maximum number of Firepads simulta-
neously connected will not be too many. If this would become a problem, the
timer-based approach could be taken instead.

3.5.2 GUI Module

This module shall create the GUI and afterwards it should handle the events
that occur in the GUI. This includes taking care of selecting a speci�c Firepad
(to be monitored and commanded).

3.5.3 Signal Module

The signal module will handle the connection and communication with the
Firepads. It will register Firepads when they report that they are up and run-

23

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om
Figure 3.11: Flow of the Fire�ghter Central Module

ning which will cover requirement REQ2-2(see Section 2.3.1). Requirement
REQ2-3(see Section 2.3.1) states that when a Firepad sends data about its
current condition the Signal module shall receive the information and act ac-
cordingly. It shall also ful�ll REQ2-4(see Section 2.3.1), thus it shall be able
to send a new lifetime to a speci�c Firepad.

3.5.4 Drawing Module

The drawing module will have contain functions for drawing the overview of a
map with the Firepads position on it as well as more speci�c data of a selected
Firepad. Clearly REQ2-1(see Section 2.3.1) shall be ful�lled by this module.

24

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3.6 Summary of Ful�lled Requirements

All the requirements have been met with this design. And therefore if this is
implemented, the resulting applications will demonstrate the e�ects of power
management.

Requirement Ful�lled Section
REQ1-1 Yes Section 3.2
REQ1-2 Yes Section 3.2
REQ1-3 Yes Section 3.3.5
REQ1-4 Yes Section 3.3.4
REQ1-5 Yes Section 3.3.4
REQ2-1 Yes Section 3.5.4
REQ2-2 Yes Section 3.4
REQ2-3 Yes Section 3.4
REQ2-4 Yes Section 3.5.3

Table 3.2: Summary of Ful�lled Requirements

25

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Chapter 4

The Implementation of the

Design

The result of the work consists of the two applications designed. During the
implementation of these several problems arise and were dealt with. One early
decision taken was to use LINX for communication. Here follows �rst an intro-
duction to LINX, and afterwards the implementation details of each application.

4.1 The Monitor

Implementing the Monitor was straight-forward by following the design (see
Section 3.2). The application consists of two processes, one called the Publisher
and another one called the Terminal (representing the corresponding modules
in the design).

The Publisher (see Section 3.2.1) is in practice a big loop with the two
states from the design, using LINX signals to do all communication (both with
the Power Manager as well as the Visualizer).

The Monitor is designed such that there can only be one subscriber at a
time. There is nothing stated at what should happen if a new subscription
request is received, when there already is a subscriber. The decision in the
implementation became to remove the old subscriber in favor of the new one.
This was the logical choice because if the opposite would be chosen (to keep the
current), a subscriber could �lock up� the Monitor and never let it go.

The Terminal (see Section 3.2.2) is also a loop, printing to and reading from
standard input (using standard C I/O-functions). Lastly the API was very small
and contained no surprises.

4.2 The Visualizer

The GUI was implemented with the Glade1 and GTK+2. GTK+ is a graphical
user interface toolkit for creating GUIs for the X Window System.

1http://glade.gnome.org/
2http://www.gtk.org/

26

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

A decision was made to use GTK+ as the library for creating the user
interface in the Visualizer since attempts with Ruby3 and its libraries resulted
in unsatisfactory performance.

Glade is a graphical user interface designer and one of the reasons for choos-
ing Glade is the ease of creating a GUI with pointing and clicking, thus it is
possible to get immediate feedback of how the design looks.

The communication with the Monitor or the Power Manager on the Signal
module was implemented with the help of LINX for the communication. The
Animation module used the PLplot4 library to plot the graphs in real-time.
PLPlot was used for the reason that the library is able to plot graphs in real-
time which is the main purpose of this task.

There were a few minor discrepancies between the implementation and the
design in the Visualizer component.

For example the diagram below illustrates the process of beginning subscrib-
ing data from a Monitor. Here the Main Thread would sends a subscription
request to the Monitor process, however when using LINX it is not possible to
send a message to a process with the name only. Thus a hunt call needs to
be made and the exchange of signals di�ers from the design and became like
shown in Figure 4.1. The Animations threads are not dynamically started when
a Subscription Reply is received because of problem that was encountered.

When starting the animation threads dynamically when a Subscription Re-
ply was received, the signal thread would supposed to receive a subset of all
LINX messages, yet it seemed like it would receive all possible messages thus
creating a race condition of who would receive the stop animating request be-
tween the receive thread and the animation thread. Therefore the animation
threads will be started when the Visualizer component is started.

The sequence diagram illustrates the successful case from subscribing to
unsubscribing from the Visualizers perspective.

The �rst event that is triggered is that a user presses a subscribe button,
the corresponding callback function for that button is called and a hunt signal
is dispatched to get the location of the Monitor process. The hunt signal reply
indicates that a Monitor process is found by LINX. A subscription request is
then sent to the demo process and a reply acknowledgment is received. The
Animations threads reads from a log at a speci�c interval, the �rst time noth-
ing is written in the Log. The Signal thread writes data to the Log when it
receives a Data signal which contains the data to be written. When the user
presses the unsubscribe button, a similar sequence to the subscribe button is ex-
ecuted, however this time the address of the Monitor process is known therefore
a unsubscription signal can be sent to it directly.

One of the larger obstacles of the Visualizer was creating the GUI. In the
beginning the graphical user interface was made in Ruby since it is an easy
scripting language and therefore a mock-up of a GUI could be rapidly created.
In addition the animation could be easily implemented since it exist libraries for
drawing graphs to visualize the data. For creating the graphical user interface,
three di�erent GUI toolkits: Shoes, Tk and Ruby-GNOME2 were used.

The major problem was that the Scru�y library used, a library to generate
vector based graphs did not seem to be developed to render graphs in real-

3http://www.ruby-lang.org/en/
4http://plplot.sourceforge.net/

27

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Figure 4.1: Actual Signal Sending

time. The rendering and displaying the images was only possible a few times
per second, this resulted in three or four graphs could only be updated once a
second if the images were small enough. The larger the graphs were the longer
the process took to render them consequently the process became so slow that
the program could not handle it and soon it would crash.

Functions in Shoes were made which would draw directly on a canvas but
the same setback occurred again namely the animation together with the com-
munication module resulted in that the program could not handle the drawing
and data parsing under those conditions and crashed.

With these problems in mind a decision was made to use another language
since Ruby and its libraries were to slow for the application requirements. The
decision was to use Glade with GTK+ a programming language independent
GUI concept. The consequence is a �exible system, without risk to re-write
the graphical part of the software in case a change to another programming
language.

4.3 The Firepad

The Firepad consists of a single process. The behavior of the Firepad is con-
forming to the sequence diagram de�ned in section the design. Communication
is also here done solely by LINX.

If a request of lifetime is received, it is propagated to the Power Manager
by hunting for it, and then sending the message. This would of course be a
problem if there is no Power Manager running, but this application assumes its
existence.

28

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

4.4 The Central

The implementation of the Central application was very similar to the imple-
mentation of the Visualizer application. There are however some di�erences,
there are two threads in the Central application. One thread is listening for sig-
nals from the Firepads and the other one is handling the GUI. The animation
is this time driven by how often the Firepads new information.

The animation was done with the help of the Cairo5 library which is a
library for creating vector graphics and one of its backends is the X Window
System. We used it since vector graphics looks good on a display and moreover
it seemed easy to create simple shapes and �gures since vector graphics deals
with geometrical objects such as curves and lines.

The communication for the Signal module is again implemented with the
Enea Linx for Linux. GTK+ and Glade was also used in this application to
create the GUI.

The Central can receive three types of signals: a register request signal,
updated data signal and a lost connection signal.

When the Central receives a register request signal it will allocate space for
a Firepad, map the name it sent to an ID and it will with the help of LINX
attach to the Firepad. Attaching to a Firepad means that if the connection
is lost, a signal will be sent to the Central from a LINX process and thus the
allocated space for the Firepad can be removed.

When the Central receives an update signal from a Firepad it will update
the data of the corresponding Firepad data in the Central. It will subsequently
draw redraw the representation of every Firepad.

5http://cairographics.org/

29

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Chapter 5

Conclusion

After the implementation of the applications, there are several questions to be
answered. The most important one is if the resulting software ful�ls the require-
ments. Following is a review of the requirements presented in the architecture
sketch, and afterwards a discussion about the question asked in the introduction.

5.1 Review of Requirements

By considering the requirements one by one, assurance can be made that the
software ful�ls the functionality required.

REQ1-1: The Monitor shall survey the Power Manager and collect Power Data.

This is ful�lled by the Monitor receiving LINX signals from the Power Manager.
However, no real surveillance of the Power Manager is done (all communication
is one-way, from Power Manager to the Monitor). This could be a problem if
the user wishes to know whether the Power Manager is alive or not. But in this
implementation, only the data is monitored since that is the primary interest.

REQ1-2: The Monitor shall be able to send power data to the Visualizer.

By using inspiration from the subscriber/publisher pattern, the Monitor can get
a subscriber (Visualizer) and send data to it, in the form of LINX signals, as
long as it is requested.

REQ1-3: The Visualizer shall display the power data received from the moni-
tor.

This requirement is ful�lled by receiving LINX in a signal listening thread which
writes the received data to a log. The log is polled from an animation thread
which will plot a graph in real-time to visualize the power management e�ects.

30

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

REQ1-4: The Visualizer shall be able to establish a connection the Monitor.

This is ful�lled by the Visualizer hunting for a process named Monitor. The
Visualizer can then send a subscription request to the Monitor and thus a con-
nection has been initiated.

REQ1-5: The Visualizer shall be able to send commands to the monitored
system.

This requirement is ful�lled by hunting for the Power Manager with the help of
LINX and once the Power Manager has been located, a command can be sent
to it.

REQ2-1: The Central shall display current condition of the connected Firepads.

The Central receives messages from the Firepads, and when an update message
is received the Central will with the Cairo library redraw the representation of
all Firepads. Clicking on a speci�c Firepad in the Central extra information
about that Firepad will displayed.

REQ2-2: A Firepad shall be able to automatically �nd the Central and connect
to it.

By using a hunt call, the Firepad searches for a speci�cally named process on
a speci�c host (i.e. a host with a speci�c name) in this implementation. When
found, a registration request (as a LINX signal) can be sent. By searching for a
speci�c process on a speci�c host can of course be a problem in a more general
scenario, but in this is prototype it is acceptable.

REQ2-3: A Firepad shall be able to send data about its current condition to
the Central.

With the use of LINX signals, the data can be sent to the Central after a reg-
istration request/reply has been exchanged. The data is in this case generated
in the Firepad process and then sent. In a real application, this data would
instead be collected from sensors.

REQ2-4: The Central shall be able to set required battery lifetime of a Firepad.

This requirement is ful�lled by selecting a Firepad in the Central and if clicking
on sends. The Central will send a signal including the required battery lifetime
to the Firepad which will contact the Power Manager to set the lifetime.

31

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

5.2 Power Management on GEODES

Power management can de�nitely be implemented on a distributed embedded
system, the Fire�ghter scenario is a working prototype demonstrating this, un-
der the assumption that the Power Manager and the Power Manageable Com-
ponents can be implemented.

In the Firepad, the feature of setting a requested lifetime demonstrates that
Power Management can be hidden below a layer of abstraction. This lets the
application developers to utilize the features of Power Management without
extensive knowledge in the area.

It has also been shown that the Power Management is possible to be de-
ployed on a heterogeneous distributed system. Since in the �re�ghter use case,
two di�erent kinds of system has participated in the communication. Also, no
assumptions on the underlying hardware or software has been taken from the
Centrals view, only that the speci�ed communication protocol has been imple-
mented.

5.3 Developers' Toolkit

During the course of this thesis an investigation about what should be included
a Developers' toolkit from the perspective of an application developer. This
Developers' toolkit would include among other things an API to be used by a
developer of applications that could bene�t from the use of power management.

A developers' toolkit should have a well de�ned interface to an application
that is taking care of the power management features, since this seems to be the
easiest way to control the power management. For example setting a required
lifetime could be done by calling a function with the desired value.

One problem in the �re�ghter scenario is that the �re brigade leader cannot
examine a �re�ghter's device to see how long it is required to survive (the leader
can only set this value, not read it). This is problematic, since it becomes
impossible for the leader to get an overview of the current situation. Therefore,
it would be a very good function to have in a developer's toolkit.

Also, a function to shutdown all but the necessary functions for a system to
run is also a good feature e.g. a mobile phone may shutdown everything except
what is needed to make an emergency call. This could be generalized such that
a single (or a few) components can be prioritized, such that they should be kept
at an higher performance level than the rest of the system.

5.4 Future Work

Since this project lasted only ten weeks, a lot of ideas were either implemented
hastily or not at all. This has led to the existence of some implementation details
of lesser quality; this is also a downside of agile software development. Some of
these rough edges are brought into the light here to explain how things could
have been (or can be done) di�erently in the future to enhance the application.

32

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

5.4.1 The Monitor

The �nal version of the Monitor does not implement the publisher/subscriber
pattern completely, but only a part of it. The lacking detail is the fact that the
Monitor only allows one subscriber. In this version it's not a problem, since the
requirements (REQ1-2, see Section 2.2.1) only asks for the capability of sending
data to the Visualizer. It could de�nitely be of value to have several Visualizers
monitoring the same node (for example if the Visualizers are in di�erent places
geographically).

A very important �aw in this experiment is that the battery is simulated.
This leads to a problem since that means any examination of the e�ects of power
management with respect to power drainage, is ultimately based on the quality
of the simulation. In this thesis, such observations has not been done, it has
only examined the e�ects of state-based situations.

By adding the functionality to read the remaining power from a real battery
would �x this �aw and give new possibilities of observing the e�ects of power
management.

5.4.2 The Visualizer

In terms of functionality there is no major component that seems necessary to
add to the Visualizer.

However, there are some improvements that could be made to the Visualizer:
making the graphs larger, more fashionable, showing them in a separate window
or add a resizable feature.

5.4.3 The Firepad

The main thing to be added to the Firepad application is some kind of output
that demonstrates the e�ects of the power management on the local hardware. A
prototype OpenGL application was developed (that would display temperature)
which would be a�ected by the local Power Manager. This was not used in the
�nal prototype since the OpenGL wasn't implemented on the used operating
system.

5.4.4 The Central

A problem of mostly theoretical nature in the Fire�ghter Central application
is an error due to excess amount of data received. The data received from the
Firepads drives the animation rate. Thus if the Firepads are too many Firepads
on a map, they could send too much data for the central to process and as a
result may crash. An improvement and solution that could be implemented is
to bu�er and �lter the data received by the Firepads.

A more extensive expansion of the Central could be to implement an algo-
rithm that controls the �re�ghters. This would require an elaborate use case (by
adding more parameters to the scenario) to give a computer controlled Central
more input to work on. A possible addition could be requirements of a minimum
number of �re�ghters at the scene at all times. This would require the Central
to prolong �re�ghters required lifetime if new �re�ghters are not coming to the
emergency scene in time.

33

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Tools

Cairo

Vector graphics library
http://cairographics.org/

Glade

GUI builder
http://glade.gnome.org

GTK+

GUI library
http://www.gtk.org

LATEX

Typesetting library
http://www.latex-project.org/

LINX

Inter-Process communications library
http://linx.sourceforge.net/

PLPlot

Graph plotting library
http://plplot.sourceforge.net

WebSequenceDiagrams

Sequence diagram tool
http://www.websequencediagrams.com/

34

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

References

[1] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-

Oriented Software Architecture Volume 4: A Pattern Language for Dis-

tributed Computing. John Wiley and Sons, 2007.

[2] Simon Eriksson. System Analysis of Energy-Constrained Quality of Service

and Power Management Techniques. Royal Insitute of Technology, Depart-
ment of Machine Design, 2010.

[3] Eric T Freeman, Elisabeth Robson, Bert Bates, and Kathy Sierra. Head

First Design Patterns. O'Reilly Media, 2004.

[4] Robert C Martin. Agile Software Development, Principles, Patterns, and

Practices. Prentice Hall, 2002.

35

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Appendix A

Manual for Visualizer

To visualize the data monitored on a board, a subscription has to be established
to that node. To subscribe to a node (Figure A.1):

1. Choose a node to subscribe to in the combobox

2. Click on the subscribe button

Illustration of subscribing to a node:

Figure A.1: Visualizer in Action

To stop receive data from a node unsubscribe from it (Figure A.1):

3 Click on the unsubscribe button and the node subscribe to will be unsub-
scribe.

36

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

To set a new required lifetime of a node that is subscribed to, you need to
send it a command to do so. To set required lifetime (Figure A.2):

4 a) Put a value in the entry box

4 b) Click on the set buttons

To set new battery lifetime:

5 Click on the battery checkbox to get an in�nite amount of power.

Or to set a speci�c battery level:

6 a) Put a value in the entry box

6 b) Click on the set buttons

Additional feature:

7 To auto scroll among the received messages check the Autoscroll box, if
you want to look further at a message uncheck the auto scroll and go to
that message.

Figure A.2: Subscribing a node

37

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

Appendix B

Manual for Fire�ghter

Central

Figure B.1: Fire�ghter Central Screenshot

Firepad represented by a blue dot with a ring around it. A green ring (3)
represents the Firepad selected and its data is show to the left of the map. A
red ring (2) around the Firepad represents a Firepad that is not selected and
thus his data is not shown anywhere except the graphical representation of his
current coordinates.

The red rectangles represent a temperature and which scale is shown to the
right.

To set a new required lifetime of the selected Firepad:

38

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

1 a) Write a number in the entry box

1 b) Click on the Set lifetime button

39

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

