
www.F
irs

tR
an

ke
r.c

om

Dynamic Conflict-Free Transmission
Scheduling for Sensor Network Queries

Octav Chipara, Chenyang Lu, Member, IEEE,

John A. Stankovic, Fellow, IEEE, and Catalin-Gruia Roman, Member, IEEE

Abstract—With the emergence of high data rate sensor network applications, there is an increasing demand for high-performance

query services. To meet this challenge, we propose Dynamic Conflict-free Query Scheduling (DCQS), a novel scheduling technique for

queries in wireless sensor networks. In contrast to earlier TDMA protocols designed for general-purpose workloads, DCQS is

specifically designed for query services in wireless sensor networks. DCQS has several unique features. First, it optimizes the query

performance through conflict-free transmission scheduling based on the temporal properties of queries in wireless sensor networks.

Second, it can adapt to workload changes without explicitly reconstructing the transmission schedule. Furthermore, DCQS also

provides predictable performance in terms of the maximum achievable query rate. We provide an analytical capacity bound for DCQS

that enables DCQS to handle overload through rate control. NS2 simulations demonstrate that DCQS significantly outperforms a

representative TDMA protocol (DRAND) and 802.11b in terms of query latency and throughput.

Index Terms—Query scheduling, TDMA, sensor networks.
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1 INTRODUCTION

EARLY research on wireless sensor networks (WSNs) has
focused on low data rate applications, such as habitat

monitoring [1]. In contrast, recent years have seen the
emergence of high data rate applications, such as real-time
structural health monitoring [2] and preventive equipment
maintenance [3]. For instance, a structural health monitor-
ing system may need to sample the acceleration of each
sensor at rates as high as 500 Hz, resulting in high network
load when a large number of sensors are deployed for fine-
grained monitoring. Moreover, the system may have highly
variable workload in response to environmental changes.
For example, an earthquake may trigger a large number of
new queries in order to assess any potential damage to the
structure. Therefore, a key challenge is to provide a high-
throughput query service that can collect data from large
networks and adapt to workload changes.

To meet this challenge, we propose Dynamic Conflict-free
Query Scheduling (DCQS), an integrated framework for
transmission scheduling designed to meet the communica-
tion needs of high data rate applications. A data collection
application may express its collection interests as queries
over subsets of nodes which may involve data aggregation

[4]. Instances of these queries are executed periodically to
collect data at the base station. The use of routing trees in
executing query instances introduces precedence constraints
among packet transmissions. For example, when data
aggregation is used, a node must wait for its children’s
data reports before computing an aggregated data report
and relaying it to its parent. Intuitively, integrating
application layer information (the periodicity of queries)
and routing layer information (the precedence constraints)
into the transmission scheduling process may lead to
significant performance improvements. By incorporating
this cross-layer information into the scheduling process,
DCQS provides not only better performance than tradi-
tional transmission scheduling techniques designed for
general workloads and networks, but also has the follow-
ing salient features: 1) DCQS can adapt its transmission
schedule in response to the addition/removal of queries
and changes in query rates without having to recompute
its transmission schedule. 2) DCQS dynamically deter-
mines the transmissions to be executed in each slot and, as
a result, it may adapt to workload changes more effectively
than traditional TDMA protocols with fixed transmissions
schedules. 3) DCQS has low runtime overhead and limited
memory requirements making it suitable for resource-
constrained devices.

The remainder of the paper is organized as follows:
Section 2 describes the query and network models we adopt.
Section 3 details the design and analysis of DCQS. Section 4
describes how DCQS handles dynamic networks and work-
loads. Section 5 provides simulation results using NS2.
DCQS is compared with existing transmission scheduling
approaches in Section 6. Section 7 concludes the paper.

2 SYSTEM MODELS

In the following, we describe the query and networks
models that DCQS builds upon.
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2.1 Query Model

DCQS assumes a common query model in which source
nodes produce data reports periodically. This model fits
many applications that gather data from the environment at
user-specified rates. Such applications generally rely on
existing query services [5]. A query is characterized by the
following parameters: a set of sources that respond to a
query, the query period Pq, and the start time of the query
�q, and an optional function for in-network aggregation [4].
Query instances are released periodically to gather data from
the WSN. We use Iq;k to denote the kth instance of query q.
The query instance Iq;k is released at time Rq;k ¼ �q þ k � Pq
which we call the release time of Iq;k. For each query
instance, a node i needs Wq½i� slots to transmit its
(aggregated) data report to its parent. DCQS can support
queries with in-network data aggregation, such as average
and histogram [4], as well as more common forms of
aggregation such as packet merging [6] and data compres-
sion [7]. While DCQS can optimize the performance of
queries with aggregation, it also supports queries that do
not perform aggregation.

A query service works as follows: a user issues a query to a
sensor network through a base station, which disseminates
the query description to all nodes. To facilitate data
aggregation, each nonleaf node waits to receive the data
reports from its children, produces a new data report by
aggregating its data with the children’s data reports, and then
sends it to its parent. We assume that there is a single routing
tree that spans all nodes and it is used to execute all query
instances. This assumption is consistent with the approach
adopted by existing query services [4]. During the lifetime of
the application, the user may issue new queries, delete
queries, or change the period of existing queries. DCQS is
designed to support such workload dynamics efficiently.

2.2 Network Model

DCQS works by scheduling conflict-free transmissions in a
time slot. To determine whether two transmissions are in
conflict, we introduce the Interference-Communication (IC)
graph. The IC graph, ICðE; V Þ, has all nodes as vertices and
has two types of directed edges: communication and
interference edges. A communication edge ab

!
indicates that

the packets transmitted by a may be received by b. A subset
of the communication edges forms the routing tree that is
used for data collection. An interference edge ab

!
indicates

that a’s transmission interferes with any transmission
intended for b even though a’s transmission may not be
correctly received by b. An example of an IC graph is shown
in Fig. 2.

The IC graph is used to determine if two transmissions

may be scheduled concurrently. We say that two transmis-

sions,ab
!

and cd
!

are conflict-free (ab
! k cd!) and may be scheduled

concurrently if 1)a, b, c, and d are distinct and 2) ad
�!

and cb
!

are

not edges in E. Referring to Fig. 2, the transmissions ea�! and

fb
�!

conflict due to the interference edge eb
!

. In contrast,

transmissions ne�! and po�! are conflict-free, since edges no�!
and pe�! are not part of the graph.

RID, a realistic method for constructing IC graphs based
on Receive Signal Strength (RSS) measurements, is pro-
posed in [8]. To gather RSS measurements, nodes transmit

sequences of two packets. The first packet is broadcast at
maximum power and is used to identify the sender and
prepare the potential interfering nodes to measure the RSS
during the subsequent packet transmission. The second
packet is transmitted at the default power. Based on the
collected RSS values, interference edges are added to the IC
graph as follows: Consider a node p which receives packets
from one of its children c. Node p knows c’s RSS as well as
the RSS of all other senders which may interfere with c’s
transmission. RID generates all sets of interferes IðpÞ such
that jIðpÞj � Nr, where Nr is a bound on the number of
senders that may be active in a time slot. Given the
transmission cp!, RID computes Signal to Noise Plus
Interference Ratio (SNIR) for each IðpÞ. If the SNIR for the
set IðpÞ is below a threshold, then incoming edges from the
nodes in IðpÞ to p are added to the graph. RID’s
communication cost is linear in the number of nodes.

The IC graph is based on the SNIR model. Empirical
studies validating the accuracy of the SNIR model on
802.15.4 [9], [10], [8] and 802.11 [11] radios have already
been performed. Moreover, MAC protocols which take
advantage of the SNIR model have already been proposed
and their performance validated empirically [12]. These
previous studies on real hardware indicate that the IC
graph is a realistic assumption. The IC graph was studied in
[9], which presented a realistic approach for constructing IC
graphs based on the SNIR model and RSS measurements. It
should also be noted that the IC graph model adopted by
our algorithm is more realistic than models often adopted
by earlier scheduling algorithms (e.g., unit disk models and
ignore interference).

Interference is inherently probabilistic and time-variant.
It is important to note that the SNIR threshold controls the
temporal stability of the IC graph. A conservative SNIR
threshold would lead to a more stable IC graph at the cost
of reduced throughput. We recognize that even when using
conservative SNIR threshold, packets may be still corrupted
as a result of intermittent interference. We address these
issues through retransmissions and multipath routing (see
Section 4).

While the IC graph is built conservatively to improve
temporal stability, over time the interference relations may
change significantly. We may detect changes in IC graph by
monitoring the reliability of data collection over time. If the
reliability falls below a user-set threshold then the IC graph
is rebuilt. The IC graph also needs to be updated when
nodes are added or removed.

3 PROTOCOL DESIGN

DCQS separates the problem of conflict-free query schedul-
ing in two parts. First, we consider the problem of
scheduling each query instance in isolation when all
network resources are dedicated to its execution. To this
end, DCQS constructs plans for executing each query
instance. A plan is a sequence of steps, each comprised of
a set of conflict-free packet transmissions. DCQS executes a
plan sequentially by performing the transmissions assigned
to each step. Upon the completion of a plan execution, the
data reports from all sources involved in the query would
have been delivered to the base station.
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Next, we consider the problem of executing a set of
queries submitted by the user. DCQS could accomplish this
by executing instances one at a time as they are released
according to their constructed plans. If this were the case, a
single query instance would be executed at any time even
though some instances may be executed concurrently due
to spatial reuse. To improve throughput, DCQS dynami-
cally determines which steps in the plans of the released
instances may be executed without conflict and executes
them concurrently in a slot. A slot is a period of time
sufficient for transmitting a packet and acknowledging it.
Note that, unlike traditional TDMA protocols, DCQS does
not maintain an explicit schedule but rather determines the
schedule at runtime based on the temporal properties of
queries and their plans.

This approach has several intrinsic advantages:

1. DCQS separates the costly process of constructing
plans from the dynamic transmission scheduling
performed in each slot.

2. To reduce the overhead, DCQS reuses previously
constructed plans for queries whenever possible. We
will show that many queries may be executed
according to the same plan.

3. The DCQS schedule executes query instances based
on their temporal properties. Thus, DCQS can
handle changes in query rates and the addition/
removal of queries efficiently.

4. Rate control may be performed to prevent overload.

To facilitate efficient query scheduling, DCQS shares
information across the traditional protocol stack boundaries
(see Fig. 1). DCQS has two main components: a planner and
a scheduler. The planner is responsible for constructing
plans. The planner uses the IC graph and the following
query information exposed by the application: the set of
sources and the number of packets each node involved in a
query has to transmit. The scheduler runs on every node
and makes scheduling decisions at runtime based on the
start time and period of queries as exposed by the
application and the plans constructed by the planner.

DCQS works as follows:

1. When a new query is submitted, DCQS identifies a
plan for its execution. As discussed in Section 3.1, it is
often the case that many queries can be executed
using the same plan. When no plan may be reused,
the planner constructs a plan for executing the query.

2. Next, the base station performs rate control to ensure
that the total query rate remain within the maximum
query rate under DCQS. If necessary, the rates of the
queries are decreased proportionally to not exceed
the maximum query rate.

3. The phase, period, and aggregation function of the
query are disseminated to all nodes.

4. At runtime, the scheduler executes all query
instances.

We will start by presenting a centralized version of the
planner. Next, we describe the local scheduler. The section
concludes with the description of the distributed planner.

3.1 The Centralized Planner

In this section, we will present the centralized planner.
Definitions. A plan is an ordered sequence of steps that

executes a query instance. Fig. 2 shows an example of a plan
consisting of steps 1-7. By executing this plan, an instance of
a query that has all nodes as sources and workload demand
of one slot per node would deliver all data from sources to
the base station.

A plan has the following properties: 1) In each step,
conflict-free transmissions are assigned. 2) When the query
involves aggregation, the plan must respect the precedence
constraints introduced by aggregation: a node is assigned to
transmit in a later step than any of its children. Note that
DCQS does not impose any constraint on the order in which
a node’s children transmit. 3) Each node is assigned in
sufficient steps to meet its workload demand. We use Tq½s�
to denote the set of transmissions assigned to step s in the
plan of query q and Lq to denote the length of q’s plan.
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Fig. 1. DCQS uses cross-layer information in making scheduling
decisions. It has two key components: a planner and a scheduler.

Fig. 2. IC graph: The solid and dotted lines represent communication
and interference edges. The edges without arrows are bidirectional. The
shown numbers are the steps in which each node transmits under a plan
for an instance with a workload demand of one slot per node.
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An example of a plan with seven steps is shown in Fig. 3.
In each step, multiple conflict-free transmissions are as-
signed. For example, nodes n and p may transmit in step 2
since their transmissions do not conflict ( ne�! k po�!). The
precedence constraints introduced by aggregation are also
respected: nodes p and q transmit in earlier steps than their
parent o.

We opt for a node to wait for data from its children even for
queries that do not involve aggregation because this results in
transmission schedules that have long contiguous periods of
activity/inactivity: the node transitions from a sleep state to
the active state just-in-time to receive the data from its
children and transitions back to sleep after it completes
collecting data from its children and relaying it to its parent.
Such schedules are efficient because they reduce the wasted
energy in transitions between sleep and active states.

Since a node waits to receive the data reports from its
children (to support data aggregation and improve energy
efficiency), the query latency may be reduced by assigning
the transmissions of a node with a larger depth in the
routing tree to an earlier step of the plan. This reduces
query latency because it reduces the time a node waits to
receive the data reports from all of its children.

The pseudocode of the centralized planner is shown in
Fig. 4. The centralized planner works in two stages. In the
first stage, the planner constructs a reversed plan (Vq) in
which a node’s transmission is assigned to an earlier step
than its children. In the second stage, it constructs the actual
plan (Tq) by reversing the order of the steps to enforce the
precedence constraints. We will be using the notation Vq½i�
and Tq½i� to refer to the set of transmissions assigned in ith
step of the reverse and actual plans, respectively. The
planner maintains two sets of nodes during the construction
of Vq: completed and eligible. A node n is a member of the
completed set if the planner has already assigned n to
transmit in sufficient steps such that its workload demand
is met. The eligible set contains nodes whose parents are in
the completed set. Initially, the completed set contains the root
of the routing tree and the eligible set contains its children.
The planner considers the eligible nodes in order of their
priority and assigns steps in which they transmit to their
parents. The priority of a node depends on its depth,
number of children, and ID. Nodes with smaller depth have
a higher priority. Among the nodes with the same depth,
the ones with more children have higher priority. Node IDs
are used to break ties. After the planner assigns steps for n
to transmit to its parent, it moves n from the eligible to the
completed set, and adds n’s children to the eligible set. The

first stage is completed when the completed set contains all
the nodes. In the second stage, the planner reverses the
order of the steps in the reversed plan.

Let us consider how the scheduler assigns n’s transmis-
sions to its parent p in the reversed plan. The planner
associates with each node two pieces of information:
n:minStep and n:assignedSteps. The value of n:minStep is
the step number in which the planner attempts to assign n’s
transmission to p, while the value of n:assignedSteps is the
number of steps in which n is assigned to transmit. Since
nodes with smaller depth have a higher priority, p’s
transmissions to its parent has already been assigned to
enough steps. Let s be the last step in the reversed plan Vq in
which p transmits to its parent. In the reversed plan, the
earliest step in which n may transmit its own data report to
p is n:minStep ¼ sþ 1. This means that, in the actual plan, p
must transmit its data report to its parent at least one step
before the parent transmits its data report such that the
precedence constraints introduced by data aggregation are
respected. To determine if the transmission np�! may be
assigned to Vq½n:minStep� without conflict, n must verify
that all transmission pairs that involve np�! and any
transmission already assigned to Vq½n:minStep� are con-
flict-free. The planner assigns node n to transmit in multiple
steps until its workload demand Wq½n� is met.

Fig. 2 shows an example topology and the plan con-

structed by the centralized planner. All nodes have a

workload demand of one slot. The constructed plan is shown

in Fig. 3. Initially, the children of the root a are eligible. The

planner starts by scheduling d since it has the highest priority

among the eligible nodes. The planner assigns da
�!

to step 1

since Vq½1� ¼ ;. Next, b becomes the highest priority eligible

node. The first step in which ba
!

may be assigned is step 1.

However, since ba
! 6k da�!, ba

!
cannot be assigned to that step.

We assign ba
!

to step 2 since Vq½2� ¼ ;. Similarly, ca! and ea�!
are assigned to steps 3 and 4, respectively. When the planner

completes assigning e’s transmission to its parent ( ea�!), m

becomes the highest priority eligible node. Since da
�!

is

assigned to step 1, the first step to which md
�!

may be assigned

is 2. Since in Vq½2� only ba
!

is assigned and md
�! k ba!, we assign

md
�!

to step 2. A more interesting case occurs when f becomes

the highest priority eligible node. The earliest step to which

CHIPARA ET AL.: DYNAMIC CONFLICT-FREE TRANSMISSION SCHEDULING FOR SENSOR NETWORK QUERIES 737

Fig. 3. Constructed plan for IC graph in Fig. 2 with a workload demand of
one slot per node. The first and last columns are the step indices in the
reverse and actual plans. The top row denotes the intended receivers.
The other entries denote the senders in each step.

Fig. 4. The centralized planner.
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fb
�!

may be assigned is 3, since the transmission of its

parent’s transmission ba
!

is assigned to step 2. The planner

first attempts to assign fb
�!

to steps 3 and 4, but fails. fb
�!

cannot be assigned to step 3 due to gb
!

. fb
�!

cannot be

assigned to step 4 because ea�! 6k fb�! due to eb
!

. Since no

transmission is currently assigned to Vq½5�, fb
�!

is assigned to

it. The planner continues to produce the reverse plan shown

in the table. Next, the planner reverses the order in which the

steps are executed. Accordingly, the last step in the reversed

plan (Vq½7�) is the first step in the plan (Tq½1�), the second to

last step in the reversed plan (Vq½6�) is the second step in the

plan (Tq½2�), and so on.
It is worth noting that a plan may have uneven workload

demands across nodes. For example, when data are
collected from nodes without data aggregation, the nodes
closer to the root may require multiple slots to transmit the
data of their descendants. In this case, the planner would
assign these nodes to transmit in multiple steps as to meet
their workload demand.

3.2 Plan Sharing

The plan of a query q depends on the IC graph, the set of
sources, and the aggregation function. Queries instances
executed at different times may need different plans if the
IC graph changes due to dynamic channel conditions. As
discussed in Section 4.3, DCQS can construct plans that are
robust against certain changes in the IC graph. This allows
instances executed at different times to be executed
according to the same plan. Moreover, note that queries
with the same aggregation function and sources but with
different period or start time can be executed according to
the same plan. DCQS amortizes the overhead of computing
query plans by executing multiple queries according to the
same plan. This is often possible since queries with different
temporal properties may be executed according to the same
plan. We say that two queries belong to the same query class
if they may be executed according to the same plan.

Even queries with different aggregation functions may
be executed according to the same plan. Let Wq½i� be an
upper bound on the number of steps node i needs to transmit
the aggregated data report to its parent for an instance of
query q. If the planner constructs a plan for a query q, the
same plan can be reused to execute a query q0 if Wq½i� �
Wq0 ½i� for all nodes i. Examples of queries that share the
same plan are the queries for the maximum temperature
and the average humidity in a building. For both queries, a
node transmits one data report in a single step (i.e.,
Wmax½i� ¼Wavg½i� ¼ 1 for all nodes i) if the slot size is
sufficiently large to hold two values. For the max query, the
outgoing packet includes the maximum value of the data
reports from itself and its children. For the average query,
the packet includes the sum of the values and the number of
data sources that contributed to the sum.

The precision to which the workload demand can be
computed depends on the nature of the aggregation
function. Three cases are worth highlighting. First, when
statistical functions such as min, max, average, or histograms
are computed over a set of sensors, the workload on each
node remains constant (see previous examples). Second,
when sensors have a fixed rate, the load of each node may be

computed easily based on its location in the routing tree by
summing the workload of the descendant nodes and that of
the node and dividing it by the size of a packet. For these two
common uses, the workload of each node may be computed
precisely. Finally, when sensors have variable rates, we
advocate for constructing plans for the maximum data rate
produced by each source. While this results in some internal
fragmentation it keeps the number of plans to a minimum.

3.3 The Scheduler

In this section, we first describe how to construct a global
conflict-free schedule. We then present an efficient local
scheduling algorithm. For clarity, in this section, we assume
that all queries are executed according to the same plan, i.e.,
they belong to the same query class. We extend our solution
to handle multiple query classes in the next section.

Definitions. Each instance is executed according to the
plan of its query class. We use Eq;k½s� to denote the set of
transmissions assigned to step s of Iq;k’s plan. We say that
two steps of instances Iq;k and Iq0;k0 are conflict-free Eq;k½s� k
Eq0;k0 ½s0� if all pairs of transmissions in Tc½s� [ Tc0 ½s0� are
conflict-free. We also use the notation Eq;k½s� 6k Eq0;k0 ½s0� to
denote that the two steps conflict with each other. The
scheduler executes steps such that: 1) All steps executed in a
slot are conflict-free. 2) The relative order in which the steps
of an instance are executed is preserved: if step Eq;k½s� is
executed in time slot i, step Eq;k½s0� is executed in slot i0 and
s > s0 then i > i0. This ensures that the precedence con-
straints required by aggregation are enforced.

The brute-force approach. Let us consider a brute-force
algorithm to dynamically determine what steps may be
executed in a slot. We say step Eq;k½s� is ready if Eq;k½s� 1�
has been executed. The first step Eq;k½1� is ready when the
instance Iq;k is released at time Rq;k. Intuitively, the brute-
force approach schedules in each slot multiple conflict-free
and ready steps. Priority is given to executing steps in the
transmissions plans of instances with earlier release times.
To determine what steps may be executed in a slot, we need
to know if any two steps in the plan conflict. To facilitate
this, we construct a conflict table of size Lq � Lq that stores
the conflicts between any pairs of steps in the plan of the
query class. Fig. 5a shows the conflict table of the plan
shown in Fig. 2. Fig. 5b shows the transmission schedule
constructed using the brute-force approach under satura-
tion conditions.

The brute-force approach constructs the schedule as
follows: Initially, Eq;1½1� is the only step ready and it is
executed in slot 1. In slot 2, the steps Eq;1½2� and Eq;2½1� are
ready. However, the earliest slot when Eq;2½1� may be
executed is slot 4 since according to the conflict table
Eq;2½1� 6k Eq;1½1::3�. So, in slot 4, we schedule Eq;1½4� and
Eq;2½1�. A more interesting case occurs when scheduling the
steps in slot 6. In slot 6, Eq;1½6� is executed since it has the
earliest release time. Eq;2½3� cannot be executed in slot 6
since Eq;2½3� 6k Eq;1½6�. However, Eq;3½1� is ready and its
execution does not conflict with Eq;1½6�. Therefore, it is also
executed in slot 6. The process continues to construct the
schedule presented in Fig. 5b.

The brute-force approach is impractical due to its
computation and storage costs. The computation time for
determining what steps to schedule in a slot is quadratic in
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the number of ready steps in all instances that have been
released. The memory cost for storing the conflict table is
quadratic in the length of the plan. To alleviate these
problems, we may trade some of the throughput in favor of
reduced computational and storage costs. To this end, we
impose the additional constraint that the execution of an
instance cannot be preempted. The execution of a query
instance is not preempted if, once its first step is executed,
the subsequent steps of its plan are executed without gaps in
the following slots. In Fig. 5b, the schedule constructed by
the brute-force approach does not meet this constraint since
the execution of Iq;2 is preempted in slot 6.

Minimum interrelease time. We define the minimum
interrelease time, �, as the minimum number of slots the
execution of Iq;k must be delayed after another instance Iq0;k0

starts executing such that the execution of Iq;k and Iq0;k0 are
conflict-free. In other words, any two instances are conflict-
free as long as their interrelease time is at least �.

Consider the execution of two consecutive instances Iq0;k0

and Iq;k (from one or two queries). If the interrelease time
between Iq;k and Iq0;k0 is � and the execution of instances
cannot be preempted, then the steps Eq;k½1� and Eq0;k0 ½� þ 1�
are executed in the same slot of the transmission schedule.
Hence, � must be selected to ensure that Eq;k½1� k Eq0;k0 ½� þ 1�.
However, the execution of Iq;k may start in any slot after �
steps in the plan of Iq0;k0 are executed. Therefore, we must
guarantee that Eq;k½1� does not conflict with Eq0;k0 ½� þ 1� and
any of the subsequent slot executions, i.e., Eq;k½1� k
Eq0;k0 ½� þ iþ 1� for all i 2 ½0; Lc � � � 1�, where Lc if the
length of the plan of query class c. The minimum
interrelease time, �, is the smallest number such that the
execution of any step Eq;k½s� does not conflict with
Eq0;k0 ½sþ � þ iþ 1�, where s � Lc and i 2 ½0; Lc � s� � � 1�.
Thus, the minimum interrelease time is

� ¼ min
�2½1;Lc�

ðEq;k½s� k Eq0;k0 ½sþ � þ iþ 1�Þ

8i 2 ½0; Lc � s� � � 1�; s � Lc:
ð1Þ

The minimum interrelease time is a measure of the
degree of parallelism that is achieved in query execution. In
the worst case, when � ¼ Lc a single instance is executed at
a time.

The scheduler. Each node employs a local scheduler that
schedules the transmissions of all instances. The state of the
scheduler includes: the start time and period of all queries,
the plan’s length, and the minimum interrelease time. Note
that if all nodes have a consistent view of these parameters,
they will construct independently the same schedule. The
scheduler also knows the steps in which the host node
transmits or receives. However, the scheduler does not need

to know the specific steps in which any other nodes
transmit or receive.

The scheduler has two FIFO queues: a run and a release
queue. The release queue contains all instances released but
not being executed. The run contains the instances to be
executed in slot s. Although the run queue may contain
multiple instances, a node is involved in transmitting/
receiving for at most one instance (otherwise, it would be
involved in two conflicting operations). A node n deter-
mines if it transmits/receives in s by checking if it is
assigned to transmit/receive in any of the steps to be
executed in s. If a node does not transmit/receive in s, it
turns off its radio during s.

The scheduler enforces a minimum interrelease time of at
least � between the start time of any two instances by
starting an instance in two cases: 1) when no instances are
executed (i.e., run ¼ ;) and 2) when the step distance
between the head of the release queue (i.e., the instance with
the earliest release time) and the tail of the run queue (i.e., the
last instance that started) is larger then �. When an instance
starts, it is moved from the release queue to the run queue.

The scheduler is simple and efficient. Thus, it is feasible
to run it on resource-constrained devices. When a new
instance is released, the scheduler inserts it in the release
queue. In each slot, DCQS determines what instances
should start. This operation takes Oð1Þ, since it involves
comparing the step distance between the instances at the
head of release queue and tail of run queue with the
minimum step distance. To determine if a node should
send, receive, or sleep, DCQS iterates through the instances
in the run queue. This requires OðjrunjÞ time if each node
maintains a bit vector indicating whether it transmits,
receives, or sleeps in each step of a plan. Thus, the
complexity of the operations performed in a slot is
OðjrunjÞ. Due to the efficiency of the scheduler, a node
may construct the transmission schedule dynamically at
runtime. Moreover, the memory cost of the algorithm is also
lower than the brute-force approach. The scheduler main-
tains only the minimum interrelease time instead of a table
of conflicts as in the brute-force approach.

Fig. 5c presents the schedule constructed when the
minimum interrelease time � is four slots. The constructed
schedule has slightly lower throughput than the one
constructed using the brute-force approach. This is due to
the fact that DCQS does not preempt instances once they
are executing. This illustrates our decision to trade off
throughput to reduce the memory and processing costs. In
spite of this, our results show that DCQS still achieves
significantly higher throughput than existing solutions (see
Section 5).
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Fig. 5. The conflict table captures the transmission conflicts between pairs of steps from the plan shown in Fig. 3. A conflict is represented by the red
rectangle. Based on the conflict table you can construct schedules either by brute-force or through the DCQS approach. (a) Conflict table. (b) Brute-
force approach. (c) DCQS approach.
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Analysis. In the following, we prove three properties of
the DCQS scheduler. First, we prove that the scheduler
never schedules conflicting transmissions in the same slot.
Second, we analyze the network capacity in terms of query
completion rate under DCQS. This result is important
because it enables us to prevent the network workload to
exceed DCQS’s capacity (as described in Section 4.2).
Finally, we characterize the energy consumption of a node.

Theorem 1. The scheduler executes conflict-free transmissions in
all slots.

Proof. Consider the scheduler constructing a schedule for
the following sequence of instances Iq1;k1

; Iq2;k2
; Iq3;k3

. . . .
We note that the scheduler ensures that the pairs Iq1;k1

,
Iq2;k2

, and Iq2;k2
, Iq3;k3

are conflict-free, but it does not
directly ensure that Iq1;k1

and Iq3;k3
are conflict-free. In

general, we must prove that Iqi;ki does not result in any
conflict when its schedule overlaps with any instance
Iqj;kj where j > i.

Let si and sj be the steps in the plans of Iqi;ki and Iqj;kj
that the scheduler assigns in the same slot. Since the
scheduler enforces a minimum interrelease time of �
between consecutive instances then sj � si � ðj� iÞ�
� � �. Thus, the scheduler executes conflict-free trans-
mission in any slot. tu

Property 1. The maximum query rate of DCQS is 1
��slotSize where

slotSize is the size of a slot in seconds.

This is the case since an instance can be released every �
slots for a maximum query completion rate of 1

��slotSize .
Therefore, DCQS does not exceed its capacity if:

X
q

�

Pq=slotSize
� 1; ð2Þ

where, Pq is the period of query q.

3.4 The Multiple Query Class Scheduler

We now extend our scheduler to support multiple query
classes. To this end, we must refine the definition of
minimum interrelease time to accommodate the case when
instances are executed according to different plans. We
define the minimum interrelease of query classes c and c’ �ðc; c0Þ
as the minimum number of slots an instance of class c0 must
wait after an instance of class c started such that there are no
conflicts. Note that � is not commutative.

Given the minimum interrelease times between any
ordered pairs of query classes, the scheduler needs to
control the interrelease times of two consecutive query
instances based on their query classes. We note that the
storage cost of the multiple class scheduler is quadratic in
the number of query classes, since it must store the
minimum interrelease time of each pair of query classes.
However, as discussed in Section 3.2, the number of query
classes in a WSN is usually small.

When all queries belong to a single query class, the
scheduler only needs to check if the step difference
between the instance at the head of the release queue and
the instance at the tail of the run queue exceeds the
minimum interrelease time to guarantee conflict-free
transmissions. However, in the case of multiple query
classes, to guaranteee that all minimum interrelease times

are enforced, the scheduler should check if the step
difference between the instance at the head of release queue
and all instances in run queue exceeds the minimum
interrelease times between their respective query classes.
An efficient mechanism for doing this is for the scheduler
to keep track of the slot when the last instance of each
query class started. To enforce all minimum interrelease
times it suffices for the time when the last instance of each
class started to exceed the minimum interrelease time
between that class and the class of the instance at the head
of the release queue. Thus, the number of comparisons
necessary to enforce the minimum interrelease time equals
the number of query classes. As a consequence, the
scheduler handles multiple classes without increasing its
computational complexity significantly since the number of
classes is a constant (i.e., it does not depend on the number
of instances either in release or in run queues).

Equation 2 allows us to compute DCQS’s maximum
query throughput for a single query class. It is easy to see
that a conservative bound on the maximum query rate for
multiple classes is at least 1

�max�slotSize , where �max is the
maximum minimum interrelease time for all pairs of query
classes. However, this approach significantly underesti-
mates the maximum query rate supported by DCQS
particularly when the values of � differ significantly. To
reduce the pessimism of the bound, we derive a sufficient
condition for ensuring that all queries may be scheduled
without exceeding the network capacity.

Theorem 2. Given a set of queries classes C, DCQS may
schedule all queries without exceeding the network capacity if:

X
q

maxc02C�ðclsðqÞ; c0Þ
Pq=slotSize

� 1; ð3Þ

where clsðqÞ is q’s class and Pq is q’s period.

Proof. Consider a query instance Iq;k of class c ¼ clsðqÞ. Any

query instance Iq0;k0 of class c0 may start after Iq;k
completes �ðc; c0Þ steps in its execution. As such, in the

worst case, Iq;k will delay the execution of any query

instance Iq0;k0 for at most maxc02C�ðc; c0Þ. In other words,

Iq;k prevents other query instances from being executed

for at most maxc02C�ðc; c0Þ. Hence, the network utiliza-

tion of q, i.e., fraction of time the network executes q

alone is: maxc02C�ðc;c0Þ
Pq=slotSize

. Thus, DCQS does not exceed its

capacity if there is sufficient time to execute all queries,

i.e., the total utilization of all queries does not exceed 1:

X
q

maxc02C�ðclsðqÞ; c0Þ
Pq=slotSize

� 1:

ut

While (3) is still a conservative bound on query capacity,
as shown in our simulation study, it is close to the actual
achievable throughput and hence is suitable for rate control.

It is worth highlighting that DCQS supports the case
when queries involve overlapping node subsets. In this
case, DCQS would construct a plan for each query and
compute the minimum interrelease time between the two
plans. Nodes shared by multiple queries will have higher
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transmission demand including transmissions for all
queries in which they are involved. It is important to note
that DCQS does not construct an optimal schedule for
executing these queries, but rather constructs a plans for
executing each query in isolation. While this may result in
suboptimal schedule, the construction of independent plans
that may be executed concurrently by enforcing the
minimum step distance facilitates the development of
schedulers with small runtime overhead.

3.5 Distributed Planner

In this section we present a distributed planner which uses
only neighborhood information in constructing plans.
Specifically, a node knows only its adjacent communication
and interference edges. We say that a node is in n’s one-hop
neighborhood if there is a communication or interference edge
between it and n. The two-hop neighborhood of node n

includes n’s one-hop neighbors and their one-hop neighbors.
After running the decentralized planner, a node knows its
local plan which contains the steps of its two-hop neighbors.

To construct a local plan, a node communicates only
with its one-hop neighbors. However, some of the neigh-
bors may lie outside the node’s communication range. A
routing algorithm or limited flooding may be used to
communicate with these nodes over multiple hops.

A node n constructs a plan in three stages: plan
formulation, plan dissemination, and plan reversal. The
formulation stage starts when a node n becomes the highest
priority eligible node in its one-hop neighborhood. When
this occurs, n broadcasts a Plan Request to gather informa-
tion about transmissions which have already been assigned.
To construct a conflict-free plan, n must know the steps in
which its two-hop neighbors with higher priorities were
assigned. Upon receiving the Plan Request from n, each one-
hop neighbor checks if there is a node in its own one-hop
neighborhood that has a higher priority than n. If no such
node exists, the receiver responds with a Plan Feedback
packet containing its local plan. Otherwise, the node does
not reply. After a time-out, node n will retransmit the Plan
Request to get any missing Plan Feedback from its one-hop
neighbors. Since all Plan Feedback are destined for n, to
reduce the probability of packet collisions, nodes randomize
their transmissions in a small window. Once n receives the
Plan Feedback, it has sufficient information to assign its
transmissions to its parent using the same method as the
centralized planner. In the second stage, n disseminates its
local plan to its one-hop neighbors via a Plan Send. Upon
receiving a Plan Send, a node updates its plan and
acknowledges its action via a Plan Commit.

To ensure that DCQS constructs a conflict-free schedule,
neighboring nodes must have consistent plans. We note that
the distributed planner achieves this objective through
retransmission when needed. If a Plan Feedback from a
neighbor is lost, n assumes that a higher priority node has
not yet been scheduled and retransmits the Plan Request
until it has received Plan Feedback from each neighbor or
reached the maximum number of retransmissions. Simi-
larly, during the plan dissemination stage, node n retrans-
mits the plan until all its neighbors acknowledge the correct
reception of its Plan Send via a Plan Commit.

Finally, the planner reverses the plan. To do this, a node
must know the length of the plan. We take advantage of the
routing tree and data aggregation to compute the length of
the plan as follows: A node computes the length of its local
transmission plan length based on the maximum step
number in which a transmission/reception is assigned. The
node aggregates its local length of the plan with that of its
children by taking the maximum. The result is sent to its
parent. At the base station, the plan length may be
computed. The root then uses the routing tree to dissemi-
nate this value. Upon receiving the plan length, a node
reverses its plans.

It is important to note that DCQS relies on nodes having
consistent state for proper execution of plans. We ensure
that this is the case by bounding the time for each phase of
the plan construction. If the planning process fails DCQS
will abort the construction of the plan if the plan construc-
tion does not succeed within the allotted time. The node that
failed to respond during plan construction is considered
disconnected and removed from the IC graph. At this point,
the process of plan construction is restarted. There is no
point at which DCQS will start using a plan, before all nodes
are synchronized with respect to the plan they are using.

Distributed computation of �. We now enhance the
distributed planner to compute the minimum interrelease
times. The key to computing the minimum interrelease time
distributedly lies in the observation that a node may
compute its local value for the minimum interrelease time
based on its local plan and its local knowledge of the IC
graph according to equation (1). The minimum interrelease
time of the global plan is the maximum of the minimum
interrelease times of the local plans. This suggests that,
similar to the length of the plan, the global minimum
interrelease time can be computed using in-network
aggregation. In fact, the two may be computed concur-
rently. Once the aggregation process is complete, the root
can compute the length, and minimum interrelease time of
the plan and then disseminate them to all nodes.

4 HANDLING DYNAMICS

4.1 Dynamic Workload

DCQS can efficiently adapt to changes in the workload
including arrival, deletion, and rate change of queries.
Consider the case where a user issues a new query. The
query service disseminates the query parameters to all
nodes. Next, DCQS checks if a plan for the class of the issued
query was constructed. If no plan was constructed, DCQS
uses the decentralized planner to compute a new plan and
the minimum interrelease times. DCQS isolates the execu-
tion of current queries from the setup of new queries by
periodically reserving slots for protocol maintenance. Dur-
ing these slots, the planner computes the plan and minimum
interrelease times. Once they are computed, the scheduler
has sufficient information to construct a conflict-free
schedule which accounts for execution of the new query.

If a query from the same class was previously issued, a
plan for that class has already been constructed. As
previously mentioned, queries from the same class share
the same plan and minimum interrelease time. Since
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usually there are only a small number of query classes, it is
likely that DCQS already computed the plan and minimum
interrelease times of a class. In this case, DCQS can handle
the new query without any additional overhead. Similarly,
DCQS can also handle query deletions and rate changes of
existing queries without any overhead.

4.2 Preventing Overload

A key advantage of DCQS is that it has a known capacity
bound in terms of the maximum query completion rate.
Using inequality (3), we can easily detect overload condi-
tions which obviates the need for complex congestion
control mechanisms. When the user issues a query, DCQS
uses inequality (3) to determine if the capacity is exceeded.
If the capacity is exceeded, we consider the following two
options. First, the user may be notified that the query will
not be executed because the network capacity would be
exceeded. Second, DCQS may reduce the rates of existing
queries to allow the new query to be executed. For example,
a simple rate control policy is to reduce the rates of all
queries proportionally. This rate control policy is used in
our simulations. As discussed in the previous section, DCQS
may modify the period of a query without recomputing the
plan or minimum interrelease times. Therefore, the only
overhead is to disseminate the updated rates.

4.3 Robustness against Network Changes

We now describe how DCQS handles topology changes due
to node or link failures. For DCQS to detect topology
changes, we increase the slot size to allow a parent to
acknowledge the correct reception of a data report from its
child. A child can detect the failure of its parent or their link
if it does not receive ACKs from its parent for several
consecutive transmissions. A parent detects a child failure if
it does not receive any data reports from that child for a
number of query periods.

For all nodes to maintain a consistent schedule, DCQS

must ensure the following: 1) the two-hop neighbors of a node

have a consistent view of its local transmission plan, which

dictates when the node transmits and receives data reports;

2) all nodes have consistent information about the length of

the plans and the minimum interrelease times. In response

to topology changes, the routing tree must be adjusted.

Consider the case when a node n detects that its parent p

failed and, as a result, it must select a new parent p0. This

entails the planner assigning a step in the plan for np0
�!

,

while the step in which the transmission np�! is scheduled

must be reclaimed. If np0
�!

can be assigned to the step in

which np�! was scheduled or a different step without conflicts

then DCQS only needs to update the local transmission

plan. This involves node n disseminating its updated plan

to its two-hop neighbors. If this is not possible, then DCQS

recomputes a new plan. We note that the computation of

the new plan affects only nodes with lower priority than n.

If during the computation of the plan either the minimum

interrelease times or the plan lengths are modified, this

information must be disseminated to all nodes in the

network. Consider the case when a child c of node n failed.

In this case, the step in which c is assigned should be

reclaimed. To reduce the overhead, DCQS reclaims such

slots only when other topology changes occur.
To reduce the cost of handling topology changes, we

now describe an approach to constructing robust plans that
can tolerate some topology changes. To handle this, we
change the mechanism used to adapt the routing tree in
response to link or node failure. We allow a node to change
its parent in the routing tree as long as the new parent is
selected from a predefined set of potential parents. Our goal is
to construct plans that are insensitive to a node changing its
parent under the constraint that the new parent is in the set
of potential parents. To this end, we introduce the concept
of virtual transmissions. Although node n actually transmits
to a single potential parent, we construct the plan and
compute the minimum interrelease times as if n transmits to
all potential parents. We trade off some of the throughput in
favor of better tolerating topology changes. This is similar to
other TDMA algorithms designed to handle topology
changes [13], [14].

Wireless links are known to have variable quality as
environmental conditions change. During the computation
of workload demands for each node, the user must allocate
sufficient time slots for potential packet retransmission to
ensure reliability. DCQS already provides some robustness
against change in link quality by having multiple parents
among which a node may switch. However, DCQS may
also account for variations in link quality through a
different mechanism. DCQS can accommodate such
changes by increasing the workload of a link based on its
quality. For example, link layer commonly computes the
expected number of transmissions (ETX) necessary for
correctly delivering a packet. DCQS could allocate a node to
transmit up to ETX times a packet to ensure reliable
delivery. We note that to ensure robustness, a parent is
forced to transmit at the scheduled time even if it did not
receive all data reports from its children.

4.4 Supporting Other Traffic

DCQS is optimized for improving the performance of
periodic queries. However, other types of traffic may also
exist (e.g., data dissemination and aperiodic queries). The
simplest solution for handling these transmissions is to
periodically dedicate slots for their transmission. Transmis-
sions during these slots are done using typical CSMA/CA
techniques. This approach reserves a portion of the band-
width for other types of traffic. Moreover, it is straightfor-
ward to account for these additional slots in our analysis.

4.5 Time Synchronization

DCQS requires that all nodes within the interference range
be time synchronized. The sensor network community has
proposed several efficient time synchronization protocols
[15]. For example, FTSP has an average time synchroniza-
tion error of 1:4 �s per hop with minimal communication
overhead. To account for time synchronization errors,
DCQS employs guard time intervals. Accordingly, in the
beginning of a slot, a short guard time interval is observed
by all nodes to account for clock drift. As shown in earlier
publications, the guard time intervals alleviate the need for
fine-grained clock synchronization [16].
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5 PERFORMANCE EVALUATION

We implemented the distributed version of DCQS in NS2.
We used a two-ray propagation model at the physical layer.
Since DCQS is targeted at high data rate applications such as
structural health monitoring we configured our simulator
according to the 802.11b settings. An overview of those
deployments can be found in [17]. In our simulations, the
bandwidth is 2 Mbps and the communication range is 125 m.
We set the slot size to 8.16 ms which is sufficient to transmit
2 KB of data. A simulation run takes 200 s. Unless otherwise
mentioned, each data point is the average of five runs and the
90 percent confidence intervals are plotted.

In the beginning of the simulation, the routing tree is
constructed. The node closest to the center of the topology is
selected as the base station. The base station initiates the
construction of the routing tree by flooding setup requests. A
node may receive multiple setup requests. The node selects
as its parent the node that has the highest RSS among those
with smaller depth than itself. The IC graph is constructed
according to the method described in Section 2.2.

For performance comparison, we ran two baselines:
802.11b[18] and DRAND[19]. 802.11b is a representative
CSMA/CA-based protocol, while DRAND is state-of-the-art
TDMA protocol. Unlike DCQS, DRAND does not account
for the interference relationships among nodes. Hence, the
schedule it constructs may still result in collisions. To avoid
this problem, we modified DRAND to treat the interference
edges in the IC graph as communication edges. We
augmented DRAND with a sleep-scheduling policy: a node
remains awake if DRAND schedules itself or one of its
children to transmit; otherwise, the node is turned off.

We evaluate the performance of three versions of DCQS:
DCQS, DCQS-RC, and DCQS-CM. DCQS-RC and DCQS
denote DCQS running with or without rate control. In
DCQS, the planner uses the minimum interrelease time to
decide when different steps may be executed concurrently.
As discussed in Section 3.3, by knowing the entire conflict
matrix one may make better scheduling decisions. DCQS-
CM uses the conflict matrix rather than the minimum
interrelease time to make scheduling decisions. We will use
DCQS-CM to evaluate the degree of pessimism introduced
by the minimum interrelease time. Note that DCQS-CM
uses significantly more memory and has longer runtime
overhead than DCQS. As a result, DCQS-CM may not be
suitable for resource-constraint devices.

We focus on the following metrics: query throughput,
query fidelity, and query latency. The query throughput is

the number of queries instances completed per second.

During the simulations, data reports may be dropped

preventing some sources from contributing to the query

result. We define the query fidelity to be the ratio of the

number of sources that contributed to a query result

received by the base station and the number of sources.

5.1 Single Query Class

The first set of experiments assumes that all queries belong

to the same class. Under this setup, we will

1. validate the analytical results on DCQS’s capacity,
2. compare the performance of DCQS against the

baselines,
3. compare the scalability of DCQS to that of DRAND

when the network size is varied,
4. evaluate DCQS’s overhead in relation to the network

size, and
5. evaluate the impact of the virtual transmissions on

DCQS’s performance.

5.1.1 Tightness of Capacity Bound

The first experiment is designed to validate our capacity

result for a single query and show the effectiveness of the

rate control policy. In this experiment, a single query is

executed in the network size 675 m� 675 m. The topology is

divided into grids of 75 m� 75 m. In each grid, a node is

placed at random. We present results from a single run since

DCQS constructs plans with different � values for different

topologies. Under these settings, DCQS constructed a plan

with � ¼ 22 slots. According to Theorem 1, the maximum

query rate that DCQS may support is 1
22�8:16 ms ¼ 5:57 Hz. The

vertical lines in Fig. 6 indicates the DCQS’s capacity. To

validate the capacity bound the query rate is varied from 4.9

to 6.45 Hz.
Fig. 6a shows the query throughput as the query rate is

increased. We observe that the increase in query rate is

matched by an increase in the query rate until DCQS’s

capacity (5:57 Hz) is reached. When workload exceeds the

DCQS’s capacity, the performance of DCQS degrades

drastically. As discussed in Section 4.2, rate control may be

used to avoid triggering the capacity bottlenecks. Fig. 6a

shows that DCQS-RC maintains its good performance even

when the offered load exceeds the DCQS’s capacity. Since

DCQS-CM uses the conflict matrix, it may execute more

concurrent steps than DCQS. As a result, DCQS-CM may

support a query rate as high as 6.125 Hz, which is a 9.9 percent
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improvement of DCQS. However, this improvement comes
at the cost of increased memory and processing overheads.

DCQS achieves 100 percent query fidelity below its
network capacity as shown in Fig. 6b. This result shows that

the schedule constructed by DCQS is conflict-free, validat-
ing the correctness of our algorithms. Moreover, DCQS-RC,
which uses the rate control policy, avoids the drop in query

fidelity under overload conditions. A similar pattern may
be observed in terms of delay as shown in Fig. 6c. DCQS,
DCQS-RC, and DCQS-CM have similar latencies up to the

their capacity. When the capacity is exceeded and rate
control is not used, the query latency increases sharply as
shown by DCQS and DCQS-CM curves.

5.1.2 Multiple Queries

This set of experiments compares the performance of DCQS
to that of the baselines under different workloads. The
workload is generated by running four queries with

different rates. The ratio of the rates of the four queries Q1 :

Q2 : Q3 : Q4 is 8:4:2:1. We refer to Q1’s as the base-rate. We
vary the workload by changing the base rate. The start time

of the queries is spread evenly in an interval of 81.6 ms. The
topology setup is identical to the previous experiment.

Fig. 7a shows the query throughput as the base rate is
varied. A common trend may be observed: the protocols

match the increase in the total query rate up to their
respective capacity and then their performance plummets.
The lowest throughput is obtained by 802.11 protocol. The
reason for this outcome is that the capacity of 802.11 is

exceeded in all tested settings. This is because contention-
based protocols perform poorly under heavy workloads.
DRAND outperforms 802.11 delivering all data up to a total

query rate of 2.98 Hz. All of the DCQS variants outperform
DRAND. DCQS-RC achieves a maximum query rate of
5 HZ which is 67 percent higher than DRAND. This result is

attributed to the fact that DRAND assigns slots to nodes
fairly. Fair allocation is unsuitable for queries in WSNs in
which nodes have nonuniform workloads: for example, a

node with more children needs to receive more messages
per each query instance. As in the previous experiment,
DCQS-RC maintains its good performance even under

overload conditions. This shows that our rate control policy
works not only in the single query case, but also for
multiqueries. DCQS-CM delivers all data reports up to a

total query rate of 5.21 Hz. This is an increase of 4 percent
over DCQS-RC and 74 percent over DRAND. This result

highlights that the reduction in throughput introduced by
the additional constraint of not preempting queries is small.

Fig. 7b shows the query fidelity of the protocols. As
expected, 802.11 has poor query fidelity, whereas the
TDMA protocols perform much better. DRAND achieves
high query fidelity up to its capacity of 2.98 Hz after which
it plummets due to queuing overflow. In contrast, DCQS-
RC maintains 100 percent fidelity for all tested query rates.
Fig. 7c shows the query latency of all protocols. Even for
low query rates, DCQS has significantly outperforms
DRAND. For example, when the query rate is 2.64 Hz,
DRAND has a query latency of 1.31 s. In contrast, DCQS has
a latency of 0.35 s which is 73 percent lower. DRAND has a
higher query latency because at each hop a node may need
to wait for the duration of an entire frame before it may
transmit a packet to the parent. In contrast, DCQS accounts
for the precedence constraints introduced by data aggrega-
tion when constructing the plans. This results in a
significant reduction in the query latency.

This set of experiments indicates that DCQS significantly
outperforms both 802.11 and DRAND in the considered
metrics. Two factors contribute DCQS’s high performance.
First, the planner constructs plans based on a heuristic that
accounts for the precedence constraints introduced by data
aggregation. This is effective in reducing message latency.
Second, the scheduler overlaps the execution of multiple
instances to increase query throughput.

5.1.3 Impact of Topology Size

In the following, we evaluate the scalability of the TDMA
protocols. To this end, we constructed topologies with an
increasing number of nodes by increasing the deployment
area and keeping the node density constant. All topologies
are squares with edges of sizes 675, 750, 825, and 900 m.
Each area is divided into grids of 75 m� 75 m and a node is
placed at random in each grid.

Fig. 8a shows the query throughput achieved by DCQS
and DRAND for each topology. The capacity of DCQS-RC
was computed theoretically and then verified experimen-
tally. To determine capacity of DRAND or DCQS-CM, we
increased the query rate until the query fidelity dropped
below 90 percent. This is reasonable since the DRAND and
DCQS-CM drop packets only if a node’s queue fills up.
When the topology has 81 nodes, DCQS outperforms
DRAND by 58 percent. When the topology contains
169 nodes, the performance gap between the two protocols
increases, DCQS outperforming DRAND by 115 percent.
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Fig. 7. Performance comparison when executing four queries and their base rate is varied. (a) Query throughput. (b) Query fidelity. (c) Query latency.
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The increasing performance gains of DCQS are the result of
being able to pipeline the execution of queries as the
networks become larger. While the difference between
DCQS and DCQS-CM is between 16-24 percent without a
clear trend, it is worth noting that 90 percent confidence
intervals overlap indicating that the performance may not
be statistically significant.

Fig. 8b shows the query latency at the maximum query
rate supported by each protocol. The query latency of all
protocols DCQS increases with the topology size. However,
DCQS’s rate of increase is significantly lower than
DRAND’s. The key to understanding this result is that the
one-hop delay of DRAND is significantly larger than that of
DCQS. The one-hop delay corresponds to the slope of the
shown curves. When using DRAND, a node often needs to
wait for the entire length of a frame before it may transmit
its packet. In contrast, DCQS has low one-hop delays. Two
factors contribute to this. First, DCQS organizes its
transmissions to account for the precedence constraints
introduced by data aggregation. Second, DCQS executes
multiple query instances concurrently. As such, the time
until the query instance starts being executed is reduced.
DCQS-CM has a slightly higher query latency than DCQS-
RC. This can be justified by the fact that DCQS-CM buffers
more queries for execution than DCQS-RC which reduces
the query rates to avoid triggering the capacity bottlenecks.

5.1.4 Communication Costs

To evaluate the overhead of DCQS, we have collected
statistics regarding the different types of packets trans-
mitted by DCQS. We distinguish the following categories.
The tree construction category includes all packets ex-
changed during the construction of the routing tree. The
ICG construction category includes all the packets ex-
changed for constructing the IC graph. The planer category

includes all the overhead associated with constructing

plans. Finally, the minimum interrelease category shows

the overhead of computing the minimum interrelease time.

The overhead in packets for the topologies considered in the

previous experiment are shown in Fig. 9.
Fig. 9 indicates that the cost of constructing plans

dominates the DCQS overhead. This highlights the im-

portance of the plan sharing strategies. The planning

overhead is linear in the number of nodes in the network.

Note that we did not make any particular effort in

optimizing the performance of the planner. In fact, the

planner does not take advantage of the broadcast nature of

the wireless medium using only unicast packets to dis-

seminate the plans. Therefore, we expect that the schedul-

ing cost of construct plans may be reduced.

5.1.5 Virtual Transmissions

To evaluate the impact of the virtual transmissions

approach presented in Section 4.3, we measured the

performance of DCQS when the number of parents is

varied from one to three. The results shown in Fig. 10 are

obtained from five randomly generated topologies with the

same parameters as in the previous experiment. We first

computed DCQS-RC’s maximum query rate and then

verified it empirically. In addition, we measured DCQS-

RC’s latency at the maximum query rate.
Fig. 10 indicates that the DCQS’s maximum query rate

degrades as the number of potential parents is increased.

The increase to having two or three potential parents leads

in a throughput reduction of 9.8 and 12.6 percent, respec-

tively. However, DCQS improved throughput over tradi-

tional TDMA protocols by at least 58 percent. Therefore,

even if DCQS would construct plans in which multiple

potential parents, there still are significant performance

gains. The use of virtual transmissions also increases the

query latency as shown in the same figure. The increase to

two and three potential parents results in an increase in

query latency of 7.6 and 9.6 percent, respectively. This is due

to the fact that the addition of potential parents introduces

new precedence constraints that force a node to wait longer

before receiving all data reports from its children.
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Fig. 9. Communication costs for different size networks.

Fig. 8. Performance comparison for topologies of different sizes.
(a) Query throughput. (b) Query latency.
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5.2 Multiple Query Classes

The second set of experiments is used to evaluate DCQS
with multiple query classes. We create different query
classes by varying the sources of the queries. For each query
class, we select at random a fraction of the leaf nodes as
data sources. We note that if a node has as descendent a
selected leaf node, then it also participates in that query
class since it must forward the leaf’s data. Similar to the
previous experiments, data merging is performed as data
are routed to the base station.

5.2.1 Tightness of Capacity Bound

This experiment uses the same network topology as the one
presented in Section 5.1.1. However, different from the
previous experiment, the workload includes two queries
belonging to different query classes. The class of Q1

involves 40 percent of the leaf nodes as sources, while the
class of Q2 involves all leaf nodes as sources. The obtained
minimum interrelease times were �ðc1; c1Þ ¼ 16 slots,
�ðc1; c2Þ ¼ 14 slots, �ðc2; c1Þ ¼ 29 slots, and �ðc2; c2Þ ¼ 25
slots. In Fig. 11, results from a single run are shown.

In Fig. 11, we fix the rate of query Q2 and compare the
theoretical capacity of Q1 against its actual maximum query
rate achieved in the simulations. The theoretical capacity of
Q1 is computed according to (3). To evaluate the tightness of
the capacity bound, we increase the rate Q1 until packets
start being dropped. We refer to the maximum query rate
under which no packet is dropped as the actual maximum
query rate. As shown in Fig. 11, the theoretical maximum
query rate never exceeds the actual maximum query rate.
This result shows that the theoretical bound is a conserva-
tive bound of the actual query capacity. The theoretical
maximum query rate remains the same when Q2’s rate is
between 0.42 to 2.55 Hz as shown in Fig. 11. When Q2’s rate
exceeds 2.55 Hz, the discrepancy between Q1’s theoretical
and actual maximum query rates increases. The maximum
difference is 0.66 Hz when Q2’s rate is 4.22 Hz. The slight
increased pessimism may be explained as follows: First,
both the utilization of Q1 and Q2 is overestimated. For
example,Q2’s utilization is overestimated because to enforce
minimum interrelease time between two instances of Q2 the
scheduler uses �ðc2; c2Þ ¼ 25; to enforce the minimum

interrelease time between an instance of Q2 followed by an
instance of Q1, the scheduler uses �ðc2; c1Þ ¼ 29; in contrast,
our capacity analysis uses the maximum of the two values to
represent Q2’s utilization. A similar argument holds for Q1.
Second, since the sum of utilization of Q1 and Q2 must be
smaller than 1, overestimating the utilization of Q2 leads to
underestimating the fraction of the capacity that may be
used by Q1, and the pessimism increases as the rate of Q2

increases. Similar results are obtained when we fix query
rate of Q1 and plot theoretical and actual maximum query
rates of Q2. The maximum difference between the Q2’s
actual and predicted query rates is 0.51 Hz. This figure is
omitted due to space limitations.

5.2.2 Varying Query Rates

This experiment compares the performance of DCQS to that
of the baselines for multiple query classes. The workload
comprises three queries with different rates, each belonging
to a different class. Q1, Q2, and Q3 include 100, 80, and
60 percent of the leaf nodes as sources, respectively. The
ratio of the rates of the three queries Q1:Q2:Q3 is 2.5:1.75:1.
We vary the workload by changing the base rate.

Fig. 12a shows the query throughput when the total
query rate is varied. As expected, all protocols match the
increase in the total query rate up to their respective
capacity bounds after which the query throughput de-
grades. 802.11b consistently has the lowest throughput.
DRAND performs better than 802.11b achieving a max-
imum query throughput of 2.66 Hz. DCQS, DCQS-RC, and
DCQS-CM outperform both baselines. DCQS-RC achieves a
maximum query throughput of 4.48 Hz which represents a
62 percent improvement over DRAND. DCQS-RC avoids
the performance degradation under overload conditions
through rate control. DCQS-CM the highest query through-
put of 5.23 Hz, which is an improvement of 17 percent over
DCQS-RC. However, this comes at the cost of increased
processing costs.

Fig. 12b shows the query fidelity as the total query rate is
increased. As observed in the previous experiments, after a
protocol exceeds its capacity, its query fidelity degrades
drastically. DCQS-RC avoid the performance degradation
caused by overload by using rate control. DCQS-RC
achieves close to 100 percent fidelity in all experiments.

746 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 10, NO. 5, MAY 2011

Fig. 11. Validation the capacity bound for multiple query classes.
Fig. 10. Impact of virtual transmissions on DCQS.
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This validates that DCQS schedules conflict-free transmis-
sions even in the case of multiple query classes.This shows
that our algorithms work correctly even in the presence of
multiple query classes with involving overlapping subsets
of nodes. This shows that our algorithms work correctly
even in the presence of multiple query classes with
involving overlapping subsets of nodes.

Fig. 12c shows the average query latencies. When the
total query rate is 2.98 Hz, DCQS achieves a query latency
of 0.28 s compared to DRAND which had a query latency of
1.33 s. This is reduction of over 78 percent in query latency.
The significant reduction in latency highlights the of taking
into account the precedence constraints between packet
transmissions.

6 RELATED WORK

TDMA scheduling is attractive for high data rate sensor
networks because it is energy-efficient and may provide
higher throughput than CSMA/CA protocols under heavy
load. Two types of TDMA scheduling problems have been
investigated in the literature: node scheduling and link
scheduling. In node scheduling, the scheduler assigns slots
to nodes whereas, in link scheduling, the scheduler assigns
slots to links through which pairs of nodes communicate. In
contrast to earlier work, DCQS adopts a novel approach
which we call query scheduling. Instead of assigning slots to
each node or link, we assign slots to transmissions based on
the specific communication patterns and temporal proper-
ties of queries in WSNs. This allows DCQS to achieve high
throughput and low latency.

Early TDMA scheduling protocols were designed for
static or uniform workloads [20], [21], [22], [23]. Such
approaches are not suitable for dynamic applications with
variable and nonuniform workloads. Several recent TDMA
protocols can adapt to changes in workload. A common
method to handle variable workloads is to have nodes
periodically exchange traffic statistics and then adjust the
TDMA schedule based on the observed workload [20], [24],
[25]. However, exchanging traffic statistics frequently may
introduce nonnegligible communication overhead. In con-
trast, DCQS can efficiently adapt to changes in workloads
by exploiting explicit query information provided by the
query service. Furthermore, it features a local scheduling
algorithm that can accommodate changes in query rates and
additions/deletions of queries without explicitly recon-
structing the schedule.

To combine the benefits of CSMA and TDMA, several
hybrid protocols have been proposed [16], [26]. For

example, ZMAC [16] constructs a transmission schedule
for each node but it allows nodes to contend for access to
other nodes slots using channel polling. Similarly, Funnel-
ing-MAC [26], a hybrid protocol designed for data collec-
tion, constructs a TDMA schedule that involves only the
nodes within a few hops of the sink (where high contention
occurs) while the remainder of the nodes use a CSMA
protocol. As result, the overhead of maintaining a multihop
TDMA schedule is reduced. As an efficient TDMA
scheduling algorithm, DCQS may be integrated with
existing hybrid schemes [16] [26].

Recently, several theoretical bounds for wireless net-
works have been derived [27], [28], [29]. These bounds
provided important insight on the fundamental limits of
wireless networks. However, they cannot be directly
applied in practice because they are derived based on ideal
assumptions. In contrast, in this paper, we derive a tight
bound on the maximum query rate achieved under DCQS.
Such a bound is of practical importance since it can be used
to prevent network overload.

7 CONCLUSIONS

This paper presents DCQS, a novel transmission scheduling
technique specifically designed for query services in wireless
sensor networks. DCQS features a planner and a scheduler.
The planner reduces query latency by constructing transmis-
sion plans based on the precedence constraints in in-network
aggregation. The scheduler improves throughput by over-
lapping the transmissions of multiple query instances
concurrently while enforcing a conflict-free schedule. Our
simulation results show that DCQS achieves query comple-
tion rates at least 62 percent higher than DRAND, and query
latencies at least 73 percent lower than DRAND. Further-
more, we derive the theoretical capacity bounds that may be
used to prevent network overhead through rate control.
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