
www.F
irs

tR
an

ke
r.c

om

1

 Evaluation of a method for identifying timing models

MASTERS IN SOFTWARE ENGINEERING

30 CREDITS, ADVANCED LEVEL

Author:

Lidia Tesfazghi Kahsu

14
th

 June 2012

Supervisor/Examiner:

Björn Lisper

bjorn.lisper@mdh.se

School of Innovation, Design and Engineering (IDT)

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

2

ABSTRACT

In today’s world, embedded systems which have very large and highly configurable software

systems, consisting of hundreds of tasks with huge lines of code and mostly with real-time

constraints, has replaced the traditional systems. Generally in real-time systems, the WCET of

a program is a crucial component, which is the longest execution time of a specified task.

WCET is determined by WCET analysis techniques and the values produced should be tight

and safe to ensure the proper timing behavior of a real-time system. Static WCET is one of the

techniques to compute the upper bounds of the execution time of programs, without actually

executing the programs but relying on mathematical models of the software and the hardware

involved.

Mathematical models can be used to generate timing estimations on source code level when

the hardware is not yet fully accessible or the code is not yet ready to compile. In this thesis,

the methods used to build timing models developed by WCET group in MDH have been

assessed by evaluating the accuracy of the resulting timing models for a number of

combinations of hardware architecture. Furthermore, the timing model identification is

extended for various hardware platforms, like advanced architecture with cache and pipeline

and also included floating-point instructions by selecting benchmarks that uses floating-points

as well.

Keywords: Real-time systems, WCET analysis, simulation, Early timing analysis,

SimpleScalar, SWEET, Linear timing models

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

3

ACRONYMS

(BCET): Best-Case Execution Time

(HW): Hardware

(IDT): School of Innovation, Design and Engineering

(LOC): Lines Of source Code

(LSQ): Least SQuares method

(MDH): Mälardalen Högskola

(NCNP): No-Cache No-Pipeline

(NCSP): No-Cache Simple-Pipeline

(SA): Simulated Annealing

(SW): Software

(SWEET): SWEdish Execution Tool

(WCET): Worst-Case Execution Time

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

4

ACKNOWLEDGEMENT

This thesis is part of my Master degree in Software Engineering program and it is done at the

school of IDT at Mälardalen University. First of all I want to thank the Almighty God for

giving me the strength and power to do all this work (James 1:17). I would like to express my

sincere gratitude to my supervisors Björn Lisper and Peter Altenbernd for your continuous

support and flexibility throughout the whole process of this thesis.

Andreas Ermedahl and Jan Gustafsson for giving me timely help in time of need and trying to

solve my problems despite your busy schedule. I would like to thank Andreas Gustavsson for

being available whenever I knock at your door and Linus Källberg for replying to my mails

and forwarding them to the responsible experts. Tim Bienias from Darmstadt University of

Applied Sciences, Germany who helped me in supplying configuration of SimpleScalar and

continuously strived to solve problem related to it. I want also to express my heartfelt

gratitude to Tina Lempeä from KLOK, who has edited my report thoroughly word by word

and gave it the final shape in which it is now.

My heartiest thanks go to my parents who provided me with proper education and made me

dream of a bigger future despite discouraging circumstances. My family and friends in US,

Sweden and Eritrea; I thank you for your contribution in my life.

 Västerås, June 2012

 Lidia Kahsu

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

5

AIM and CONTRIBUTION

The Programming Languages research group at MDH has developed a method to identify

timing models for source code. Such a model is valid for a certain combination of compiler

and target hardware. The method uses a test suite of programs that are compiled and run on

the target hardware. The execution time is measured for the different runs, and a linear cost

model for the source code is then fitted as to minimize the deviation of execution times

predicted by the model from the real execution times. The cost model can then be used to

predict the execution times for programs that are not yet compiled. In particular, the model

can be used to make rough estimation of the Best- and Worst-Case Execution Times

(BCET/WCET) of programs. The model fitting can be done in different ways, including linear

regression (the "Least-Squares" method), and Simulated Annealing.

The purpose of this thesis is to evaluate this method to build timing models, by evaluating the

accuracy of the resulting timing models for a number of combinations of hardware

architecture. The models were built using predefined suites of test programs, using both the

Least-Squares method and some variations of Simulated Annealing. The timing models were

used in the WCET analysis tool SWEET to make an estimation of the BCET and WCET for a

number of benchmark C programs, assuming predefined ranges of possible input values. The

accuracy of the resulting BCET/WCET estimates, and thus of the timing models, were

assessed by actually running the compiled benchmark problems on the SimpleScalar

simulator for all possible combinations of input values in the prescribed ranges.

The work of this thesis has started by evaluating some of the results achieved in RNTS2011

paper [2] for standard hardware architecture. After the evaluation has conformed to the result

of the paper then the evaluation of resulting timing models has been extended for systems

with NCNP, NCSP and advanced architecture using a number of integer operation

benchmarks. Finally, an evaluation scheme is purposed using floating-point benchmarks with

the NCNP, NCSP and advanced architecture using a number of integer operation benchmarks.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

6

Contents

1. INTRODUCTION .. 10

1.1 Real-time systems .. 10

1.2 WCET Analysis .. 10

1.2.1 Static timing analysis ... 11

1.2.2 Dynamic timing analysis .. 11

1.3.3 Hybrid timing analysis ... 12

1.4 Structure of Thesis ... 12

2. BACKGROUND .. 13

2.1 SimpleScalar ... 13

2.2 SWEET ... 15

2.3 ALF (ARTIST2 Language for WCET Flow Analysis) ... 16

2.3.1 Syntax .. 16

2.3.2 ALF and SWEET ... 17

2.3.3 C to ALF Conversion ... 18

2.4 WCET Benchmarks .. 18

2.4.1 Mälardalen WCET Benchmarks .. 18

2.5 Mathematical Equations ... 19

2.5.1 Linear Equation .. 19

2.5.2 Least-squares method ... 20

2.5.3 Simulated Annealing .. 21

3. TIMING MODELS ... 22

3.1 Identification of Linear Timing Models ... 22

3.2 Early Timing Analysis Approach .. 23

3.3 How are training programs constructed? .. 23

3.3.1 Training programs for Simple Architecture ... 24

3.3.2 Training programs for Advanced Architecture... 24

3.4 Model Identification ... 25

3.5 Experiment done by Mälardalen WCET group .. 26

3.5.1 Training Programs .. 27

3.5.2 Model Identification Method ... 27

4. PROBLEM DESCRIPTION, PROJECT SETUP and METHODS 30

4.1 Virtual Instructions ... 30

4.2 Analysis timing models using SimpleScalar .. 30

4.3 Analysis timing models using SWEET .. 31

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

7

4.4 Identification of Linear model .. 31

4.5 Source Level Timing Analysis .. 32

4.5.1 Single path timing estimates .. 32

4.5.2 Multi-path timing estimates ... 32

4.6 Floating-Point Instruction ... 33

5. RESULTS and DISCUSSIONS .. 34

5.1 Single path runs with Integer operation benchmarks ... 34

5.2 Multi path runs with Integer operation benchmarks ... 36

5.3 Single path runs with Floating-point .. 37

5.4 Problem Encountered ... 40

6. RELATED WORK .. 41

7. FUTURE WORK .. 42

8. SUMMARY and CONCLUSION ... 43

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

8

INDEX OF TABLES

Table 1: Hardware architecture vs. simulator command

Table 2: Some Mälardalen benchmark programs

Table 3: Benchmark Programs

Table 4: Average deviation of predicted vs. real execution times for benchmarks with

different model identification methods

Table 5: Predicted vs. measured times for single benchmark program runs

Table 6: Predicted vs. measured times for single benchmark program runs, advanced

architecture

Table 7: Predicted vs. measured times for single benchmark program runs, standard

configuration

Table 8: Predicted vs. measured times for single benchmark program runs, NCNP architecture

Table 9: Predicted vs. measured times for single benchmark program runs, NCSP architecture

Table 10: Predicted vs. measured times for single benchmark program runs, advanced

architecture

Table 11: BCET/WCET using SWEET analysis result

Table 12: Predicted vs. measured times for single floating-point benchmark program runs,

standard configuration

Table 13: Predicted vs. measured times for single floating-point benchmark program runs,

NCNP configuration

Table 14: Predicted vs. measured times for single floating-point benchmark program runs,

NCSP configuration

Table 15: Predicted vs. measured times for single floating-point benchmark program runs,

advanced configuration

Table 16: Comparison Integer vs. float qurt benchmarks program measured times

Table 17: Comparison simulator vs. real hardware 64 bit architecture Printf () result

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

9

INDEX OF FIGURES

Figure 1: Basic concepts of timing-analysis of a system

Figure 2: SimpleScalar Architecture

Figure 3: Architecture of the SWEET timing-analysis tool

Figure 4: The use of ALF with the SWEET tool

Figure 5: Data fitting using least-square

Figure 6: Early-Timing analysis approach

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

10

1. INTRODUCTION

1.1 Real-time systems

A system is called real-time system if:

i) The correctness is not only dependent on the logical order of events but also on

their timing.

ii) It reacts upon outside events and performs function based on those and gives

response within a certain time.

Real-time systems are classified into two by their consequence of missing deadlines: - Hard

Real-time and Soft Real-time. Hard real-time systems have sharp and specified timing

constraints from any system they control; otherwise failure to meet these timing constraints

can have catastrophic consequences. For example, if a real-time system in an automobile fails

to inflate an airbag rapidly during a collision, occupants can become severely injured due to

striking interior objects like windows or the steering wheel. In order to avoid such hazardous

outcome, the designer of a system has to be able to predict the peak-load performance and

ensure that the system does not miss the predefined deadlines. Soft real-time systems are real-

time systems where if the predefined deadlines are missed, the system quality degrades. For

example, software that maintains and updates the trip plans for trains must be kept reasonably

current but can operate to a latency of seconds.

1.2 WCET Analysis

In order to provide a safe operation of real-time systems WCET estimation is done for real-

time tasks as shown in Figure 1. Worst-Case Execution Time (WCET), the upper bounds of a

system or longest execution time of a program, is a very important aspect when verifying real-

time properties. The input data space of a program, the logic of the program code and the

timing properties of the target hardware determine in bounding the WCET. A reliable worst-

case execution time can be generated if worst-case input for the task is known.

Figure 1: Basic concepts of timing-analysis of a system [1]

Timing analysis is the process of deriving execution-time bounds or estimates and tools that

produce them are called timing-analysis tools. Timing analysis attempts to determine the

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

11

bounds of the execution time of a task when executed in a particular hardware. The time

needed for a particular execution mainly depends on the path taken by the control flow and

the time spent in the statement on this path or hardware. The determination of execution-time

bounds has to consider the potential control-flow paths and the execution times for this set of

paths. When the modular approach is used to solve timing-analysis problems, it may be

divided into sub-tasks in which some deal with properties of control flow and others with the

execution time of instructions or sequence of instructions of the given hardware. The methods

to find the upper bound are divided into three classes:

1.2.1 Static timing analysis

Static timing-analysis is a method which attempts to analyze the code to obtain upper bounds

having the set of possible control-flow paths in combination with abstract models of the

hardware architecture without executing the code. Static methods can be achieved through

value analysis, control-flow analysis and Processor-Behavior Analysis, estimation calculation

and symbolic simulation.

Value analysis – is able to determine effective memory addresses of data which enables it to

determine memory usage control. This is implemented in various tools like aiT and SWEET

[1, 34].

Control-flow analysis – is used to collect the finite possible execution paths of a task taking

task representation as input data. It can analyze source codes, intermediate codes and machine

codes. Control-flow analysis is easier on a source-code level as the control-flow structure is

not change by code optimization and linking as it is machine codes.

Processor-behavior analysis (a.k.a hardware-subsystem behavior analysis) – is finding precise

execution-time bounds for a given task using linked executable based on an abstract model of

the processor, the memory subsystem, the buses and the peripherals.

Estimation Calculation (a.k.a bound calculation) – finds the upper bound of all execution

times of the whole task based on the flow and timing information derived, using control-flow

analysis.

Static WCET analysis finds an upper bound to the WCET of a program using mathematical

models of the hardware and software involved without actually executing the program.

Mostly it is performed on some version of source code and in other cases in some form of

binary code. In general, safe and tight results are expected from static WCET analysis

methods. In order to control the consideration of infeasible execution paths, several path

descriptions and analysis methods have been developed. The level of automation and the

tightness of the results determine the usability of the static WCET analysis methods. MDH

WCET researchers have been working to identify the best mathematical model for the past

two decades. A model is evaluated to be correct if the analysis made derives a timing estimate

which is greater or equal to the measured WCET [1].

1.2.2 Dynamic timing analysis

Dynamic timing analysis, also known as Measurement-based methods – executes the code in a

given hardware architecture or simulators for set of inputs and each test run measured

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

12

execution time is given accordingly. The maximal and minimal observed execution is derived

from the measured time. Generally it is difficult to explore all possible executions to derive

the exact worst and best-case execution times. In most industries, the commonly used method

to estimate execution time bounds is to measure the end-to-end execution time of the task for

a subset of the possible executions. This timing analysis approach does not guarantee to give

the exact WCET as each measurement exercises only one path. In the worst scenario, the set

of inputs may not include the worst case path which leads to underestimation of WCET or

overestimation of BCET.

Some of the important aspects to consider when using the measurement-based method are:-

i. code to be analyzed needs to be compiled and linked to binary form

ii. input data set, to which all possible paths must be provided

iii. a hardware configuration (could be simulator) should be set up to allow correct

measurement

Even measurement-based approaches have tried to make more detailed measurements of the

execution time to give better estimates of BCET and WCET but still it does not fully

guarantee to give bounds of execution time since it uses abstraction of the task to make timing

analysis of the task feasible. But abstraction loses information which leads to overestimation

of the exact WCET and underestimation of BCET. The main crucial criterion to evaluate a

method for timing analysis is safety and precision. Safety – does it produce bounds or

estimates? And precision – are the bounds or estimates close to the exact values?

1.2.3 Hybrid timing analysis

This technique comprises of both dynamic and static timing-analysis. Hybrid timing-analysis

tools use static analysis to deduce the final WCET estimate of a program without having to

explore all paths, whereas measurement is used to extract timing estimates for small parts

(basic block) of the program to be analyzed. It requires

 An analyzed program to be compiled and linked to executable binary,

 input data set which covers possible program paths and

 Hardware (or simulator) available in a setup to allow correct measurement.

1.3 Structure of Thesis

Chapter 2 introduces the background that is necessary for understanding the problem as well

as for building solution. This chapter explores some basic concepts including SimpleScalar,

SWEET, ALF, WCET benchmarks and some important mathematical equations for deriving

the timing model analysis. Chapter 3 gives a detailed explanation of how the timing models

are identified. Chapter 4 presents the problem formulation of this thesis followed by Chapter 5

discussing the result achieved. Chapter 6 presents related work. Chapter 7 is Future work and

finally Chapter 8 Summary and Conclusion.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

13

2. BACKGROUND

Why early-timing analysis is important?

As the demand of real-time embedded systems is growing in the market, one of the key

aspects to consider in achieving the desired product is identifying suitable processor

configuration (like CPU, memory and peripherals...etc). Usually the hardware and software

parts of an embedded system are developed in parallel, which is quite often a potential

problem for choosing an inappropriate hardware configuration. In order to avoid such costly

change of hardware, configuration a WCET analysis of a system is inevitable.

However most existing WCET analysis methods of a system are carried out after the source-

code is compiled and linked to an executable binary code; or the actual hardware

configuration or input data is identified. This may rise a problem of redesigning the system if

the timing properties are not met. This issue leads to a new perspective of early WCET

estimation which enhances the possibility of selecting the right system configuration. An early

WCET estimate is a very crucial aspect in the early stage of real-time embedded systems

development for many different reasons. Most of these systems are comprised of a large

variety of software engineering tools, like schedulability analysis or component frameworks

and modeling etc. Moreover, these tools are used to for example, what hardware to use on the

different nodes, what priorities to assign to tasks, etc. These tools need to have some type of

execution time bounds in order to validate and verify early real-time properties of the system.

This thesis is carried out to evaluate a method for identifying timing models which estimates

the WCET or timing-analysis of a system from a source-code. Mostly, early-timing analyses

are done when the code is not ready to be compiled and linked to binary or the hardware is not

accessible. Also in this thesis, SWEET [24] is used to predict the execution time of a program

and SimpleScalar [23] is used to generate the corresponding measured execution time of a

program [23, 24].

In this chapter, the background that is necessary for understanding the problem as well as for

building solution is introduced. It explores some basic concepts regarding this thesis work.

This chapter is organized as follows: Section 2.1 discusses SimpleScalar; Section 2.2

describes SWEET. Section 2.3 explores ALF; followed by Section 2.4 containing WCET

benchmarks and finally Section 2.5 describes some mathematical equations which are useful

to formulate the linear timing analysis models.

2.1 SimpleScalar

SimpleScalar is a tool widely used in research areas which is an instruction to build modeling

applications for program performance analysis, detailed microarchitectural modeling, and

hardware-software co-verification. Its development was started in 1994 by Todd Austin during

his Ph.D. dissertation at University of Wisconsin in Madison, but today it is developed and

supported by SimpleScalar LLC and distributed through SimpleSacalar’s website at

http://www.simplescalar.com. The first version was released in July 1996 and it is in a

continuous process of producing new versions. It is a modeling applications that simulate real

programs running on any range of processor architectures, and systems can be built using

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

14

SimpleScalar tools. The SimpleScalar tool includes sample simulators ranging from a fast

functional simulator to a detailed, dynamically scheduled processor model that supports non-

blocking caches, speculative execution and state-of-the-art branch prediction [9]. There exists

a version of gcc that compiles C code to the SimpleScalar instruction set. This version of gcc

allows using a number of different optimization levels.

SimpleScalar simulators can emulate the Alpha, PISA, ARM and x86 instruction sets. In this

thesis, Version 2.0 has been used. It builds on most 32-bit and 64-bit with UNIX and NT-

based operating systems. Most SimpleScalar users, including this thesis, use SimpleScalar on

Linux/x86-64 processor. SimpleSaclar is freely available for academic and non-commercial

purposes and can be downloaded from SimpleScalar site [3].

Figure 2: SimpleScalar Architecture [9]

The tool-sets that are available in SimpleScalar, which consists of a collection of

microarchitecture simulators; which emulates the microprocessor at a different level of

details, are:-

Sim-fast: fast instruction interpreter, optimized for speed. It does not take into account the

behavior of pipelines, caches or any other part of the microarchitecture. Using the in-order

execution of instruction, it performs only functional simulation.

Sim-safe: checks for memory alignment and memory access permission on all memory

operations. It can also be used when the simulated program causes sim-fast to crash without

explanation.

Sim-profile: is an instruction interpreter and profiler and keeps track of and reports dynamic

instruction counts, instruction class counts, usage of address modes, and profiles of text and

data segments.

Sim-cache: is a system simulator and can emulate a system with multiple levels of

instructions and data caches, each of which can be configured for different sizes and

organizations. When the cache performance on execution time is not important, this simulator

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

15

is ideal to simulate fast cache simulation.

Sim-bpred: is a branch predictor simulator. This tool can simulate various branch prediction

schemes and report results such as prediction hit-and-miss rates. The effect of branch

prediction on execution time is not simulated accurately.

Sim-outorder: is a detailed micro-architectural simulator. This tool models the details and

out-of-order microprocessor with all of the bells and whistles including branch prediction,

caches and external memory. It can emulate machines of varying numbers of executions units

because it is highly parameterized.

In this thesis, sim-outorder is used to generate the estimated WCET and BCET of a training

program in various architectures (i.e. no cache no pipeline, no cache simple pipeline,

advanced and standard). It has used four different settings to represent standard architecture

(standard), no cache no pipeline architecture (NCNP), no cache simple pipeline architecture

(NCSP) and advanced architecture (advanced) as configuration executable files. The

<file.exe> given in every command is a file produced after compiling c file using

sslittle-na-sstrix-gcc which is a SimpleScalar compiler.

Architecture Simulator Command

Standard sim-outorder <file.exe>

NCNP sim-outorder –config outorder_no-cache_no-pipeline.config

<file.exe>

NCSP sim-outorder –config outorder_no-cache_simple-

pipeline.config <file.exe>

Advanced sim-outorder –config outorder_advanced.config <file.exe>

Table 1: Hardware architecture vs. simulator command

2.2 SWEET

SWEET (SWEdish Execution Tool) shown in Figure 3, is a tool which is developed at

Mälardalen University, C-Lab in Paderborn, and Uppsala University [1, 11].

Figure 3: Architecture of the SWEET timing-analysis tool [1]

SWEET is developed in a modular fashion in order to allow different analysis and tool parts

to work quite independently. It is designed to conform to the scheme of WCET analysis

consisting of flow analysis, a processor-behavior and an estimate calculation. SWEET has

some functionality that offers as a timing analysis tool:

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

16

1. Automatic flow analysis at the intermediate code level

2. Integration of flow analysis and a research compiler

3. The connection between flow analysis and processor-behavior analysis

4. Instruction cache analysis for level-one caches

5. Pipeline analysis for medium-complexity RISC processors

6. A variety of methods to determine upper bounds based on the results of the flow and

pipeline analysis

In SWEET, the flow analysis is integrated with a research compiler in previous version. But

the current version of SWEET instead uses the ALF language for its analysis, rather than the

internal format of the compiler. The use of ALF makes SWEET compiler-independent; if

there is a translator into ALF, then SWEET can analyze the code. The flow analysis is

performed on the intermediate code (IC) of the compiler, after the structural optimizations is

done. To find timing effects across sequences of two or more blocks in a code consecutive

simulation runs is done starting with the same basic block of the code. The analysis in

SWEET assumes that there is a known upper bound on the length of the block sequences that

can exhibit timing effects [1].

SWEET uses the language ALF as input for its flow analysis. ALF is a language mainly

intended to be used in conjunction with WCET analysis [5]. ALF will be discussed in detail in

the next section.

2.3 ALF (ARTIST2 Language for WCET Flow Analysis)

ALF is a language used for flow analysis for WCET calculation. It is an intermediate

language which was mainly developed for flow analysis instead of code generation. It is also

designed to represent a code on source-level, intermediate-level and binary-level through

direct translation. It maintains the information in the original code while performing a precise

flow analysis. ALF is a sequential imperative language which has a fully textual

representation which makes it seems as an ordinary programming language though it is

generated using a tool rather than written by hand [4].

2.3.1 Syntax

The syntax of ALF is similar to the LISP programming language which makes it easy to parse

and read. ALF uses the same prefix notation as in LISP, but with curly brackets “{”, “}” as

parentheses as in Erlang. An example is

{dec_unsigned 64 0}

which denotes the unsigned 64-bit constant 0 [4].

ALF is an imperative language with standard semantics based on state transitions. The state

consists of the contents in data memory, a program counter (PC) holding the label of the

current statement to be executed, and some representation of the stacked environments for

function calls [4].

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

17

Example of ALF program

The following C code:

if (x>y) z = 42;

Equivalently it can be translated into ALF as follows:

{ switch { s_le 32 { load 32 { addr 32 { fref 32 x } { dec_unsigned
32 0 } } }
{ load 32 { addr 32 { fref 32 y } { dec_unsigned 32 0 } } } }
{ target { dec_unsigned 1 1 }
{ label 32 { lref 32 exit } { dec_unsigned 32 0 } } } }
{ store { addr 32 { fref 32 z } { dec_unsigned 32 0 } }
with { dec_signed 32 42 } }
{ label 32 { lref 32 exit } { dec_unsigned 32 0 } }

The if statement of the C program is translated to a switch statement, jumping to the exit label

if the (negated) test becomes true (return one). The test uses the s_le operator (signed less-than

or equal), taking 32 bit arguments and returning a single bit (unsigned, size one). Each

variable is represented by size 32-bit frame.

ALF AST is an abstract Syntax tree, is a tree representation of the abstract syntactic structure

of source code after translated to ALF statement, built by parsers and additional information is

added to the AST by semantic analysis. The syntax is known as abstract as it does not give all

details as in a real syntax.

2.3.2 ALF and SWEET

ALF is used as input to the WCET analysis tool SWEET. The figure shown below describes

the uses of ALF in conjunction with SWEET.

Figure 4: The use of ALF with the SWEET tool [4]

First the input program code is read, which is represented in different formats and levels.

Then the output is given in the generic ALF format. Then the ALF code is used as an input to

the flow analysis in SWEET which outputs the results as flow constraints on the ALF code

entities. Using the mapping information created earlier, these flow facts can be mapped back

to the input formats [4].

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

18

2.3.3 C to ALF Conversion

SWEET cannot perform its analysis directly on C source or executable files. In order to

achieve its analysis SWEET uses the ALF format. As ALF is the only input to SWEET, there

are a number of translators to ALF being developed. All three types of sources (i.e. source

code, intermediate code and binary code) are covered in those translators. The C to ALF

translator which has been used in this thesis can be found on the MELMAC website [33].

MELMAC is a tool that translates C source code to the ALF format. A shell script
1
 has been

used in this thesis to make easy the conversion of C to ALF when it is run in a Linux

environment (i.e. OPENSUSE). The shell script takes a C source file and generates the

corresponding converted ALF file as output [4, 6].

2.4 WCET Benchmarks

In recent years a number of WCET analysis tools have emerged: both fully-fledged

commercial tools, and research tools. In order to compare these tools the associated methods

and algorithms, require common set of benchmarks. The crucial evaluation metric is accuracy

of the WCET estimates but there are other evaluation metrics which are equally important

such as performance (i.e. scalability of the approach) and general applicability (i.e. ability to

handle all code constructs found in real-time). In order to enable comparative evaluation of

different algorithms, methods, and tools, it is very important to have easily available,

thoroughly tested, and well documented common sets of benchmarks [7].

2.4.1 Mälardalen WCET Benchmarks

The Mälardalen benchmarks are small (all except two are less than 900 LOC) and assembled

with the same goal as mentioned above in mind. All these benchmarks are written in C and

were collected in 2005 from several researchers within the WCET field. The benchmarks

contain a broad set of program constructs to support testing and evaluation of WCET tools.

The complete set of Mälardalen benchmarks can be found in Mälardalen WCET Benchmarks

web page [8]. The main categories of benchmarks are well-structured code, unstructured code,

Array and matrix calculations, Nested loops, input dependent loops, inner loops depending on

outer loops, switch cases, nested if-statements and floating-point calculations, bit

manipulation, recursive code and automatically generated code. Some Mälardalen

benchmarks used in this thesis are given below in Table 2.

Program Description Comments
bs Binary search for the array of 15 integer elements. Completely structured

cover Program for testing many paths. A loop containing many switch

cases.
edn Finite Impulse Response (FIR) filter calculations A lot of vector multiplications

and array handling
fdct Fast Discrete Cosine Transform A lot of calculations based on

integer array elements
fibcall Iterative Fibonacci, used to calculate

fib(30)

Parameter-dependent function,

single-nested loop
fir Finite impulse response filter (signal processing

algorithms) over a 700 items long sample

Inner loop with varying number

of iterations, loop-iteration

1
 “c_to_alf_using_christers_machine”

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

19

dependent decisions
janne_complex Nested loop program The inner loops number of

iterations depends on the outer

loops current iteration number
ns Search in a multi-dimensional array Return from the middle of a

loop nest, deep loop nesting (4

levels)
nsichneu Simulate an extended Petri net Automatically generated code

with more than 250 if-

statements

 Table 2: Some Mälardalen benchmark programs [7]

Single-path/multi-path benchmarks and inputs to the benchmarks: If a program runs the

same path regardless of the inputs then it is a single-path program while multi-path program is

a program where the execution path can differ for different inputs. But in reality most

programs are run with different inputs in different invocations. During analysis of WCET, it is

important to know the possible values of the input variables. In general, in order to obtain

tight program flow constraints from the flow analysis, the input value needs to be constrained

as much as possible. The possible input variables for an embedded program or task (possibly

written in C) can be:

 Values read from the environment using primitives such as ports or memory mapped

I/O,

 Parameters to main() or the particular function that invokes the task, and

 Data used for keeping the state of tasks between invocations or used for task

communication, such as external variables, global variables or message queues.

In order to be able to test and evaluate such input dependency, multiple input values have

been defined for some of the benchmarks. The inputs are provided as intervals i.e. limits to

the inputs. The inputs are stored on the Mälardalen WCET Benchmarks web page [8] as

“input annotations” (.ann files) in SWEET format [7].

2.5 Mathematical Equations

In this section the most important mathematical formulas, used to develop the timing model

that will predict the BCET/WCET of a program, will be briefly discussed. Section 2.5.1

presents the linear equation followed by least-square methods in Section 2.5.2 and finally

simulated annealing in Section 2.5.3 is discussed.

2.5.1 Linear Equation

A Linear equation is “an algebraic equation in which each term is either a constant or the

product of a constant and the first power of a single variable” [13]. It is an equation in the

form of

where is unknown [16]. The name “linear” comes from the set of solutions of such an

equation which forms a straight line in the plane [13].

A general formula of linear equations with unknown can be written as

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

20

and can be also written as a weight for a column vector in a linear combination:

The vector equation is equivalent to a matrix equation of the form

where is an x matrix, is a column vector with entries, and is a column vector

with entries [12].

2.5.2 Least-squares method

The Least-squares method is one of the standard mathematical approaches to approximate

solution of sets of equations in which there are more equations than unknowns. It is the

simplest and most commonly used form of linear regression. The most significant application

is in data fitting where the best fit is found when the sum of squared residuals (i.e. the

difference between an observed value and the fitted value provided by the model) is

minimized [14, 17].

Figure 5: Data fitting using least-square [17]

The Least square method is categorized into linear and non-linear least squares, depending on

whether or not the residuals are linear in all unknowns. There is a close-form solution which

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

21

can be evaluated in a finite number of standard operations for linear least-squares problem

[14].

As mentioned above, the objective of the least-square method is to adjust the parameters of a

model function to best fit a data set, or a technique applied in the form of linear regression

through a set of points that provide a solution to the problem of finding the best fitting

straight line, . A simple data set can have points of data pairs ,

where an independent variable, while is is a dependent variable whose value is found by

observation. The fitting curve has a deviation (error) from each data point, i.e.,

, , …, . Then the best fitting curve has the property

that minimizes the sum of squares as shown:

Detailed information about least-squares method can be found in [14, 17, 18 and 21].

2.5.3 Simulated Annealing

Simulated annealing (SA) is a probabilistic technique which can find an optimal solution of a

cost function that may possess several local minima [15]. In SA, when the physical process is

emulated, the solid part gradually cools down and reaches “frozen” stage which happens at a

minimum energy configuration.

Each iteration of SA algorithm randomly generates a new point. The distance between the

new point and the current point is determined by the probability distribution with a scale

proportional to the temperature. The SA algorithms collects all the new points that lower the

objective including certain probability that raise the objective, but SA tries to avoid a local

minima in early iteration by exploring a better solution globally [20].

The probability of taking a step is determined by the Boltzmann distribution as,

if , and when

Temperature T is inversely proportional to the energy difference . The temperature T

is initially set to a high value and a random walk is carried out at that temperature. According

to the cooling schedule, for example: where is slightly greater than 1 [25].

This method is an easy-to-implement, probabilistic approximation algorithm, (even though

the structure of the problem might not be fully understood) which is able to produce good

solutions for an optimization problem [19].

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

22

3. TIMING MODELS

In this section, the identification of linear timing model is done is going to be discussed in

detail in order to grasp the idea behind the work of this thesis from the RNTS2011 paper [2].

Moreover, this thesis is the evaluation and extension of the result of this paper and some

results of this thesis has been used in the RNTS2011 paper.

3.1 Identification of Linear Timing Models

The linear timing model identification is done assuming that the source language is emulated

by an abstract machine which leads to tracing the virtual instruction in the source language of

a program.

For each virtual instruction , the trace then contains occurrences of (the execution

count of). The linear timing model for the abstract machine computes the execution time

 for a trace as

 (1)

 is a constant startup time, and , k =1,…,n are constant execution times for the respective

virtual instructions. If we assume that is a virtual “startup” instruction, which occurs once

in each trace, then (1) can be simplified as

 (2)

The linear timing model for a code compiled with non-optimizing compilers executed on a

simple hardware without features like pipelining or cache is expected to be more accurate

than a code executed with more complex hardware architectures containing varying

instruction execution times. Moreover, a code that has been heavily changed by using an

optimizing compiler has a less accurate timing model. The goal is to find the best model

which produces minimized deviation of predicted execution times from the real ones having

the same number of observations. There is a measured execution time for each observation

 for the compiled binary and an array of execution counts for the emulated

source code executed with the same inputs as the compiled binary. If we assume that we have

made observations, the model predicts an array of execution times, where is an -

matrix whose rows are the observed arrays of the execution count, and is an

array of virtual instruction execution times. Let be the array of measured

execution times for the different observations. The best model then amounts to finding a ,

that minimizes the overall deviation of from [2].

There are various ways to define the overall deviation and the Euclidean distance is used for

this purpose:

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

23

The least-square method (LSQ) will find a that minimizes . The minimization of

the overall deviation can also be heuristically done using SA which is applied in the

experiments.

3.2 Early Timing Analysis Approach

After training programs were designed, they were compiled and executed on target hardware

or a simulator for it. As mentioned earlier, the SimpleScalar simulator is used in this thesis in

order to ease the task. SimpleScalar was configured to simulate required architecture with a

variety of different features, and it records the number of cycles needed to execute the

program on the virtual hardware. The number of cycle values forms a vector [2].

Following that the training programs were translated to an intermediate format ALF language

using the C-2-ALF translator as mentioned in Section 2.3.3, which provides the virtual

instruction set. The execution counts for the ALF instructions were produced after SWEET

interprets the ALF code which forms the matrix [2]. Then the model has been identified, i.e.

the vector was determined using the LSQ method and SA (see Section 2.5). The last step is

to use the model for timing analysis which could be done either through simulation or a static

timing analysis. SWEET has been used to do both simulation and approximate static WCET

analysis on source level using the timing models. ALF timing models are used to extend the

interpretation mode of SWEET to provide timing estimates during simulation as shown in

Figure 6.

Figure 6: Early-Timing analysis approach [2]

3.3 How are training programs constructed?

One important aspect of timing model identification is selecting good and an adequate

number of training programs. The training programs used are synthetic program suites

which allow more control over the virtual instruction traces by avoiding problems either

with linear dependency or highly correlated execution counts. In this thesis, training

program suites for three scenarios are designed; simple architecture, advanced architecture

and floating-points.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

24

3.3.1 Training programs for Simple Architecture

The training program suites for simple architecture are constructed as follows

 The first program is the “empty” program. Execution yields the startup time for a

program (i.e. the time for a virtual RUN_PROG statement):

int main() {}

 First this program is put in the suite, as every emulation of virtual instructions

for a source program will execute RUN_PROG.

 Any nonempty C program must contain an assignment. Such a program must

execute at least one virtual STORE instruction. Thus, the next program executes

exactly one STORE:

int main() {int j=17;}

 Correspondingly, a third program executes along with STORE and RUN_PROG a

LOAD instruction. Until the full set of instructions is executed the program suite

continues with a series of simple programs executing each remaining instruction.

For example, INT_MULT instruction:

int main() {int j=42; j=j*3}

The number of function calls was equal to the number of executed RETURN instructions. In

order to avoid this dependency, which can occur due to RETURN instruction, it is replaced by

a superinstruction carrying their added execution times which will help to yield a lower-

triangular execution count matrix with nonzero diagonal entries. There were no linear

dependencies between the column vectors of such matrices. As there was exactly one program

execution per instruction, becomes a quadratic matrix. Furthermore, the absence of linear

dependency causes to be invertible and the linear system can be solved directly to

yield such that .

3.3.2 Training programs for Advanced Architecture

The advanced architecture, having caches and pipeline features, will cause instructions to

have highly context-dependent execution times. In order to have the model capturing the

influence of the context on the execution time, the “real” instructions must be executed in

a variety of contexts when identifying the timing model. Moreover, in order to capture the

cache and pipelining influence, longer instruction sequences must be executed. One way

of accomplishing this is to introduce loops in the code. The advanced architecture test

suite is built up on simple architectures and extends the programs with loops executing the

instruction under test a number of times. This extension gives reasonably good results

even though it does not capture more complex timing effects involving several different

instructions [2].

Some instructions were invariably needed during the loop introduction in the code; a

STORE to initialize the loop variable, some arithmetic operation to increment/decrement

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

25

the loop counter, some test instruction to decide the exit condition, and a JUMP to return

to the entry point of the loop. This resulted in a matrix without lower triangular execution

count. But the execution counts made linearly independent by introducing several loops

executing different arithmetic operations to increment/decrement the loop counter, and

different test instructions to break the loop. In order to break the possible linear

dependencies to instructions (like JUMP) that appear in all loops, a third part of the code

executes the loop body outside any loop. The linear dependencies between any

instructions has been broken and also the correlation minimized if the training program

has been executed a number of times, with different loop bounds set in a linearly

independent fashion.

An example of a training program for INT_MULT, consisting of two independent loops

and a section with straight-line code:

int main () {
 int max1 = …;
 int max2 = …;
 int i,j;
 for (i=1; i<=max1; i++) {
 j = I; j = j*3;
 }
 for (i=max2; i>0; i--)
 J = I; j = j*3;
 }
 J = i; j = j *3;
 }

INT_MULT would always been executed as many times as the ADD that increments i, and

the test operation that compares i with max1 if only the first loop was present. As a result,

linear dependency would have been created between these execution counts. A different

test operation is created using a second loop which uses SUB to decrement the loop

counter.

Using max1 and max2 a number of executions could be made in such a way that the

resulting execution counts for the involved virtual instructions are linearly independent.

But both loops had a single JUMP each and INT_MULT will still be the same no matter

what max1 and max2 are and in order to break linear dependency, the third appearance of

the loop body has been added. This is automated to generate training programs

automatically and the constant max1 and max2 can be varied [2].

3.4 Model Identification

There have been different approaches tried to the problem of choosing such that

predicts the execution time well for the compiled binary, running on the chosen target

platform. Even though LSQ (see Section 3.1) gave best fit for the set of programs by

selecting real-valued weights to minimize distance, it can yield models that did not predict

the execution time well for programs outside the training set. For example, it could yield

negative cycle counts for instructions which are unrealistic. Moreover, it may yield very

poor predictions for programs that execute instructions frequently as compared to other

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

26

instructions.

They have used also a more general search method that allows more freedom in

specifying constraints and objective function. The SA approach has been used, in which

each step of the SA algorithm replaces the current solution by a random solution from the

neighborhood. If the result of SA is better, it is accepted or else it may still be accepted

with a probability that depends both on the difference between the subsequent objective

function values, and on a global parameter (the “temperature”). As the temperature is

decreased during the process, jumps leaving the local solution space will become less and

less likely, so eventually the result will stabilize.

Adapting SA to minimize is easy, and it is done according to the following:

 All elements in are initialized to zero

 For producing a solution in the neighborhood of , its elements will be randomly

incremented or decremented by one, or kept as is (while upholding any imposed

constraints on the solution).

 SA has been executed several times with varying parameters to get the best result since SA is

very sensitive to its steering parameters like temperature.

3.5 Experiment done by Mälardalen WCET group

The MDH WCET group has already made an evaluation on the precision of the identified

models, as well as the influence of the training program suite. They have used two sets of

training programs for advanced architecture and simple architecture and they have tried

both LS and SA as shown in Table 4. Using a distinct set of programs consisting of fifteen

programs from the Mälardalen WCET Benchmark Suite, the models were evaluated as

shown in Table 3. Table 3 gives some basic data about the programs, including lines of C

code (#LC), the number of functions (#F), loops (#L), and conditional statements (#C).

Program #LC #F #L #C

bs 114 2 1 3

cover 640 4 3 6

edn 285 9 12 12

Esab_mod 3064 11 1 292

fdct 239 2 2 2

fibcall 72 2 1 2

fir 276 2 2 4

inssort10 92 1 2 2

inssort15 92 1 2 2

inssort20 92 1 2 2

inssort30 92 1 2 2

jcomplex 64 2 2 4

loop3 76 1 150 150

ns 535 2 4 5

nsichneu 4253 1 1 253
Table 3: Benchmark Programs [2]

First a comparison was done between predicted and real running time result generated by

running each benchmark with its specified input (all these benchmarks have their hard-

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

27

coded inputs). From the results, estimations are taken how well the derived timing models

predict real running times. Then, by removing the hard-coded inputs for some selected

benchmarks, they changed the hard-coded inputs into programs having different paths

through the code for different inputs. Later possible input values were defined for each

selected benchmark. Finally, a static BCET/WCET analysis for these benchmarks was

performed, so as to evaluate the precision of static timing analysis based on the timing

models. The real best/worst case obtained using an exhaustive search over the possible

inputs and compared with the static BCET/WCET estimates [2].

SWEET has been used for both single runs and the static analysis and it has a “single-path

mode” that can be used to emulate ALF code. SWEET is turned into a source-level

simulator estimating execution times using ALF timing models in extension of the single-

path mode. Moreover, SWEET’s static analysis has been extended so as to perform BCET

analysis on top of WCET analysis [2].

Both the training programs and benchmarks have been compiled using sslittle-na-sstrix-

gcc with no optimization and for sim-outorder executes with its standard configuration in

SimpleScalar. Sim-outorder simulates a processor with out-of-order issues of instructions,

main memory latency 10 cycles for the first access and 2 cycles for the next accesses,

memory access bus width 64 bytes, 1KB L1 instruction cache (1 cycle, LRU), no data

cache, no L2 cache, no TLB’s, 1 integer ALU, 1 floating point ALU, and fetch width 4

instructions. The branch prediction is 2-level with 1 entry in the L1-table, 4 entries in the

L2-table and history of size of 2.

The experiment done in [2] had selected benchmark programs that did not use floating-

point instructions which make ALF use 31 different ALF instructions that has formed the

virtual instruction set for the experiment. These instructions included program flow

control instructions, LOAD/STORE, and arithmetic/logical instructions excluding

floating-point arithmetic.

3.5.1 Training Programs

The “simple” training program suite has been used from Section 3.3.1. The average

deviation obtained for the set of benchmark programs in Table 4 is 29%. This result

showed that this suite is not well suited to identify models for architecture like sim-

outorder.

In order to see the influence on precision of the predicted execution, the “advanced

architecture” suite tried by executing loops with varying number of iterations. As it has

been noted, architectural features like cache and branch predictors tend to yield shorter

instruction execution times within loops which seemingly influence the identified model

and its resulting precision. To estimate the influence a program suite instantiation “small”

(loop iterating 7-17 times), “medium” extending “small” with instances of the programs

iterating up to 29 times, and “big” extending “medium” with instances iterating up to 61

times is used. Furthermore, to see the influence on the precision they tried adding the

“simple” training program suite. As a result a total of six test cases with different

variations of the training program suite produced [2].

3.5.2 Model Identification Method

The LSQ and SA have been tried with different variations. For LSQ, both direct solution

and with instruction execution times rounded to the closest integer, has been tried. The

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

28

outcomes showed that in both cases, there was no restriction on the instruction execution

times: therefore, e.g., negative execution times were possible and would indeed appear

sometimes.

The Euclidean deviation is used as an objective function for SA with three

variations. In the first variation, SA was run without any constraints on the final solution

and in the second run, with constraints that all virtual instruction execution times enforced

to be non-negative. This was done to observe whether it would yield a better prediction

when the constraints were added. In the third variation, the search space size was

restricted for SA by enforcing an upper limit on virtual instruction execution times. This

was created to shorten search times for SA; it was interesting and important to see whether

the identified model precision was affected by it.

All these variations of LSQ and SA were tested with all six different training program

suite combinations as shown in Table 4. The result shows the relative average deviation of

predicted running times from measured running times.

Training suite LSQ LSQ

rounded

SA SA≥0 0≤SA

≤2×

small 39% 34% 10% 10% 10%

medium 50% 45% 14% 12% 12%

big 64% 63% 16% 13% 13%

small + simple 18% 17% 15% 10% 20%

medium + simple 19% 15% 16% 10% 10%

Big + simple 17% 14% 16% 10% 10%

 LSQ: standard least squares method, LSQ rounded: LSQ rounded to closest integer

 SA: Simulated Annealing with no constraints on the solution

 SA≥0: SA restricted to nonnegative instruction times, 0≤SA≤2×: SA additionally restricted

from above

Table 4: Average deviation of predicted vs. real execution times for benchmarks with different model

identification methods [2]

As shown in the above table, SA has much better result for all examples compared to LSQ

but LSQ gave improved results when a simple training suite was added. Even rounding

the LSQ result did not bring a significant change, whereas SA consistently gave the best

results when restricted to nonnegative values. The restriction has a significant effect for

the small + simple training suite which resulted in faster convergence in SA solutions in

all cases.

 The result obtained in [2] shows deviation between the measured and the predicted

running time for the individual benchmark programs as shown in Table 5. All the

programs have a deviation from close to zero up to about 20% except for cover which has

an extreme outlier with more than 50% underestimation.

A subset of benchmark codes has been used to evaluate the approximate source-level

timing analysis. Since the programs are multipath, in which execution times vary with

inputs and their worst- and best-case input are known. Therefore, by running SimpleScalar

with proper input, the real BCET and WCET could be approximated.

The result of the analysis is shown in Table 6 of [2], along with BCET and WCET

recorded for SimpleSacalar. The result obtained is reasonable BCET and WCET estimate

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

29

as compared to the precision measured by the single execution times.

In [2], the model identification method was tried for advanced architecture, in which sim-

outorder is configured to simulate a processor with some characteristics like out-of-order

issues instruction, main memory latency 18 cycles for first access and 2 cycles for next

accesses, 8KB L1 data and instruction caches, respectively (1 cycle), 256KB L2 data and

instruction cache (6 cycles), all caches LRU, no TLB, 2 integer ALU's, 2 floating-point

ALU's, fetch decode, issue, and commit width all 4 instructions, perfect branch prediction.

Then the model identification was rerun for this hardware configuration and the best

model obtained was by SA>=0 and evaluated the precision of the timing model using a

single benchmark program run. The deviation obtained was 0-30% and the average

deviation is 15%.

Program Model Measured Diff Rel. diff

 bs 274 317 43 13.6%

cover 3515 8388 4873 58.1%

edn 244189 232561 11628 5.0%

esab_mod 698848 699934 1086 0.2%

fdct 9250 11294 2044 18.1%

fibcall 788 901 113 12.5%

fir 6973 8468 1495 17.7%

inssort10 3674 3529 145 4.1%

inssort15 549 579 30 5.2%

inssort20 729 759 30 4.0%

inssort30 1089 1119 30 2.7%

jcomplex 671 673 2 0.3%

loop3 11999 13371 1372 10.3%

ns 31897 33718 1821 5.4%

nsichneu 19744 18545 1199 6.5%
Table 5: Predicted vs. measured times for single benchmark program runs [2]

Program Model Measured Diff Rel. diff

 bs 130 184 54 29.3%

cover 1837 3605 1768 49.0%

edn 140136 119291 20845 17.5%

esab_mod 368743 408076 39333 9.6%

fdct 4998 3940 1058 26.9%

fibcall 283 377 94 24.9%

fir 3923 4035 112 2.8%

inssort10 2094 1678 416 24.8%

inssort15 284 303 19 6.3%

inssort20 379 395 16 4.0%

inssort30 569 568 1 0.2%

jcomplex 282 307 25 8.1%

loop3 5017 6290 1273 20.2%

ns 18758 18725 33 0.2%

nsichneu 10969 10129 840 8.3%
Table 6: Predicted vs. measured times for single benchmark program runs, advanced architecture [2]

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

30

4. PROBLEM DESCRIPTION, PROJECT SETUP and METHODS

The objective of this thesis is to evaluate the method used to build timing models, by

evaluating the accuracy of the resulting timing models for a number of combinations of

hardware architecture. The models have been built using predefined suites of test programs,

using both the LSQ method and some variations of SA. To ease the task of measuring

execution times, the hardware simulator SimpleScalar has been used as target hardware rather

than real hardware. The thesis project started with analyzing the result that has been produced

and published by the WCET group in RTNS11 paper [2].

The main hardware used in this thesis was a PC with Opensuse 11.4 version. To ease the task

of measuring execution times is carried out by using SimpleScalar version 3.0e simulator.

SimpleScalar can be configured to simulate a variety of processor architectures, and there

exist a version of gcc that compiles C code to the SimpleScalar instruction set. This version of

gcc allows using a number of different optimization levels. There have been four different

configurations of SimpleScalar that simulated the NCNP architecture, NCSP architecture,

Standard architecture and advanced architecture mentioned in Table 1. Moreover, alongside

with SimpleScalar, SWEET has been used as one of the main software or tools in this thesis.

So far, no version has been set on SWEET because it is a research prototype. SWEET was

modified several times throughout the thesis by fixing bugs found in it. Some shell scripts has

been used during the project setup and analysis because SWEET is a command based tool

without any GUI. Firstly, the platform was set up after installing SimpleScalar and tried out

with some Mälardalen benchmarks that have been used in Table 5. The next step was to install

SWEET and attempt to execute some Mälardalen benchmarks in order to make sure that

SWEET was installed properly. In both these startups of the project, only single-path mode

was taken into account.

4.1 Virtual Instructions

The first step to identify a source-level timing model for a given combination of hardware

configuration is to select a set of virtual instructions (such as arithmetic/logic operations,

branching, function calls/returns etc). An abstract machine that can execute source code has

been defined using the set of virtual instructions.

4.2 Analysis timing models using SimpleScalar

The following steps were involved for analyzing timing models with SimpleScalar.

i) The training program generator was an executable file and it has been executed to

generate specific c-file training programs. The training program generator should

be set according to the matter at hand to produce the specific training suite (for

example, if floating-point benchmarks were used, we have to use the proper

combination in order to identify the corresponding model).

ii) Then the training programs c files are compiled using this command:

sslittle-na-sstrix-gcc $file.c –o $file.exe

 in which $file is replaced with respective c file and outputs an $file.exe file.

iii) Then it is executed using sim-outorder with different combinations of

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

31

SimpleScalar processor configurations and it produced the cycle counts for each exe

file:

sim-outorder –config outorder_<processor configuration>.config

$file.exe

where <processor configuration> is replaced by a specific SimpleScalar processor

configuration of the hardware architecture and produces cycle counts for each training

program suite.

4.3 Analysis timing models using SWEET

The following steps were involved for analyzing timing models with SWEET.

i) For SWEET, the first step was done to transform all the training program suite c-files

to an intermediate format, ALF, which provides virtual instruction using a shell script.

The c_to_alf_using_christers_machine.sh was a shell script that would

run the C-2-ALF translator melmac on a machine where it was installed during the

thesis project and written as follows:

c_to_alf_using_christers_machine.sh $file.c

where $file.c is replaced with training program suite c-file

ii) Then the ALF file is executed to produce the count of statements occurrences

(statements are like store, call… etc.)

sweet –i=file.alf –ae pu tc=st

where –i option represent input-files, which file.alf are the particular ALF files and –ae

is used to give abstract execution to produce flow facts. The option pu is used when –ae

should be run on code containing imports (i.e. undefined).

Both steps done in 4.1 and 4.2 are written together in a shell script
2. The shell script is

executed as follows:-

 ./produce-input-data.sh

which gives a matrix to produce a result line for an equation file in the form of , where

 is the result generated in 4.3 using SWEET and is generated in 4.2 using SimpleScalar.

These results are written to Axb.csv file as an output of the shell script
2
.

4.4 Identification of Linear model

The output produced in Section 5.3, named Axb.csv, is fed to the file which is an equation

solver, as input, in order to identify a linear timing model with an execution time for each

virtual instruction from the measured execution times and recorded instruction counts.

./EquationSolver.sh –i58 Axb.csv

2
 produce-input-data.sh

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

32

As mentioned in Section 3.4, the model identification is summarized into a shell script
3
 which

takes Axb.csv and solves equations of the form A*x=b using three different algorithms,

namely LU decomposition, linear regression and SA. The –i58 option is used to remove

column 58 in Axb.csv which is a “RETURN” statement in order to avoid dependency as

explained in Section 3.3.1. This will also create several CSV files in which all output files are

summarized in overview.csv where the best vector is to the left of a corresponding CSV

file with the same name as a headline of the left-most column in the directory [26].

4.5 Source Level Timing Analysis

A source level timing analysis is done based on the best vector produced in Section 4.4 using

SWEET.

4.5.1 Single path timing estimates

i) An alf file is executed using SWEET

sweet -i=$file.alf -ae pu css vola=i tc=st,op

where –i, -ae and pu options has already been explained in Section 4.3. The css option is

used to check if a single state is generated, i.e., it throws run-time error if more than one state

is generated during the abstraction execution. $file.alf is replaced by a particular

Mälardalen WCET benchmark. Moreover, tc=st,op is a type counting which counts the

number of occurrences for each type during an execution. In this particular situation, it counts

the occurrence of statements (i.e. store, call... etc) and operators. This produces predicted

times for single benchmark programs, similar to Table 5 and 6.

ii) The same procedures as Section 4.2 is done using SimpleScalar except that $file

is replaced by a benchmark file and produces measured times for single

benchmark programs.

Both i) and ii) are summarized in a shell script
4
. The shell script is executed as follows: -

./produce-output-data.sh <bestvector.csv> <benchmarks>

where bestvector.csv is produced in Section 4.4. <benchmarks> is replaced by a

directory containing all benchmarks selected to be used for single path estimates. A for-loop is

iterated throughout the whole benchmarks. The output of this shell script is written to

compare.csv file containing measured and predicted timing estimates into two different

columns.

4.5.2 Multi-path timing estimates

The source level timing analysis is also evaluated using a subset of benchmark codes which

are multipath programs. The BCET and WCET can been known for such programs since

BCET and WCET of the inputs are known. This thesis has only worked to estimate BCET and

WCET of proper benchmarks using SWEET. The measured BCET/WCET using SimpleScalar

is not included since it is not a priority in this thesis.

During this thesis, some benchmarks, which has been evaluated using multi-path source level

3
 EquationSolver.sh

4
 produce-output-data.sh

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

33

timing, are identified by the WCET Mälardalen research group. These benchmarks are

bsort100, esab_mod, insertsort, minmax, ndes, and nsicheu.

In order to produce estimated BCET/WCET of these benchmarks, the following command is

executed:-

sweet -i=file.alf annot=file.ann -ae aac=file.clt tc=st,op

merge=all

The abstract execution is done by using an annotation using the option annot=file.ann

which contains the input range. The option aac=file.clt generates BCET and WCET

estimate using ALF AST (i.e. ALF abstract syntax tree) construct costs. As mentioned in

Section 4.5.1, tc=st,op is type counting the occurrence of statements (i.e. store, call... etc)

and operators.

4.6 Floating-Point Instruction

Single path runs with floating-point operation benchmarks have been extended to untried task

which has never been done before, either as a thesis work or by the WCET research group. It

is accomplished by identifying a set of considered benchmarks with floating-point

instructions. The first step was to check if SimpleScalar can compile floating point

instructions. In order to achieve this, simple c-file with a floating-point number is created and

compiled using the SimpleScalar compiler as follows:-

sslittle-na-sstrix-gcc float.c

where float.c is a simple code which prints a floating number. After SimpleScalar

successfully compiled the c-file, 15 benchmarks that use floating-point instructions were

identified from the set of considered Mälardalen benchmarks. These benchmarks are

bsort100, cnt, expint, lcdnum, ludcmp, matmult, minver, mm, qsort-exam, qurt,
select, sqrt, st, ud, and whet.

Then the training programs generator code is assembled in a way that enables it to produce

training programs that contain floats. The next step was to follow the steps starting from

Sections 4.2 to 4.5, which are analyses of the timing models using the SWEET and

SimpleScalar. During the process of analysis of timing models using SWEET, sqrt, st and

whet benchmarks could not produce result, so they are removed from further procedures.

The only difference from Section 4.5.1 is that SWEET has a new way of handling floating-

point values and new flags have been implemented. The command used to execute the

floating point is:-

sweet -i=$file.alf -do floats=top -ae pu tc=st,op

where –do is used to configure the domain (i.e. integer or float) to be used by the abstract

execution. The floats=top is the default setting is used all calculations of floating-point

values result in TOP (safe). The other flags used have already been mentioned in Section

4.5.1.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

34

5. RESULTS and DISCUSSIONS

The purpose of this thesis is to evaluate the method used for identifying timing models. The

result achieved after the experiment done in Section 4 for identifying timing models is

presented in this section for different hardware architectures (standard architecture, NCNP

architecture, NCSP architecture and advanced architecture) using integer and floating-point

benchmarks.

sim-outorder is configured to simulated a processor (i.e. standard architecture) with the

following characteristics: out-of-order issues of instructions, main memory latency 10 cycles

for the first access and 2 cycles for the next accesses, memory access bus width 64 bytes, 1KB

L1 instruction cache (1 cycle, LRU), no data cache, no L2 cache, no TLB’s, 1 integer ALU, 1

floating point ALU, and fetch width 4 instructions. The branch prediction is 2-level with 1

entry in the L1-table, 4 entries in the L2-table and history of size of 2 and 2 memory system

ports. After that, sim-outorder is configured to simulate a processor (i.e. NCNP) with the

following characteristics, out-of-order issues of instructions, main memory latency 10 cycles

for the first access and 2 cycles for the next accesses, memory access bus width 64 bytes, 1KB

L1 instruction cache (1 cycle, LRU), no L1 data cache, no L2 cache, no TLB’s, 1 integer

ALU, 1 floating point ALU, and fetch width 1 instructions. The branch prediction is 2-level

with 1 entry in the L1-table, 4 entries in the L2-table and history of size of 2, 1 memory

system port, 1 instruction fetch queue size.

Next sim-outorder is configured to simulate a processor (i.e. NCSP) with the following

characteristics, out-of-order issues of instructions, main memory latency 10 cycles for the first

access and 2 cycles for the next accesses, memory access bus width 64 bytes, 1KB L1

instruction cache (1 cycle, LRU), no L1 data cache, no L2 cache, no TLB’s, 1 integer ALU, 1

floating point ALU, and fetch width 1 instructions. The branch prediction is 2-level with 1

entry in the L1-table, 4 entries in the L2-table and history of size of 2, 1 memory system port,

4 instruction fetch queue size. Finally, sim-outorder is also configured to simulate a

processor (i.e. advanced architecture) with the following characteristics: out-of-order issues of

instructions, main memory latency 18 cycles for the first access and 2 cycles for the next

accesses, 8KB L1 data and instruction cache, respectively (1 cycle), 256KB L2 data and

instruction cache (6 cycles), all caches LRU, no TLB, 2 integer ALU’s, 2 floating point

ALU’s, and fetch decode, issue, and commit width all 4 instructions, perfect branch

prediction. The integer benchmarks were experimented for both single and multi-path

benchmark program runs whereas floating-point benchmarks for single benchmark program

runs. Furthermore, the findings and questions that could be a good ground for future works

are also discussed.

5.1 Single path runs with Integer operation benchmarks

The results shown below were achieved after running Mälardalen benchmarks which only

uses integer operations. In Table 7, the result produced using the standard architecture

using sim-outorder executed with its standard configuration is presented. All programs

have deviations from close to zero up to about 20% except cover, which is an extreme

outlier with more than 50% underestimation similar the result produced in Table 5 in the

RNTS2011 paper.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

35

Program Model Measured Diff Rel. diff

 bs 309 317 8 2.5%

cover 4060 8388 4328 51.6%

edn 286775 232561 54214 23.3%

esab_mod 795679 699934 95745 13.7%

fdct 10265 11294 1029 9.1%

fibcall 762 901 139 15.4%

fir 10162 8468 1694 20.0%

inssort10 4377 3529 848 24.0%

inssort15 642 579 63 10.9%

inssort20 852 759 93 12.3%

inssort30 1272 1119 153 13.7%

jcomplex 719 673 46 6.8%

loop3 12608 13371 763 5.7%

ns 37840 33718 4122 12.2%

nsichneu 22235 18545 3690 19.9%
Table 7: Predicted vs. measured times for single benchmark program runs, standard configuration

In Table 8, the NCNP architecture is relatively similar to the result from the standard

configuration, except that the nsichneu is an extreme outlier benchmark with more than

115% underestimation. On the contrary, cover has improved to 35% compared to Table 7. In

Table 9, for NCSP architecture, the nsichneu benchmark again showed to be an extreme

outlier with more than 132% underestimation. Moreover, the fdct benchmark is an outlier

with more than 53% underestimation but cover is still better than the standard configuration

with less than 43% underestimation. As the hardware configuration gets more advanced, the

underestimation of cover gets closer to the standard architecture. The nsichneu benchmark

result is quite strange that in NCNP and NCSP architecture is an extreme outlier but when it is

estimated in advanced architecture the deviation is only 8.3% as shown below in Table 10.

The nsichneu program is somewhat special in that it is automatically generated, so its

control structure can be slightly different from a hand-written code, but why does it behave so

differently for these architectures and not in the advanced one? An inquiry was made in order

to realize what property of the nsichneu code makes it behave so differently. Is it rich in

some particular kind of instruction? Or is it something in its control structure, or data access

pattern, which makes it behave like this? As further checks were done with the output of

nsichneu from SimpleScalar, the main cause was branch prediction hit ratio which creates

poor predictions by timing models.

Program Model Measured Diff Rel. diff

 bs 288 281 7 2.5%

cover 4780 7310 2530 34.6%

edn 268190 264317 3873 1.5%

esab_mod 796055 931622 135567 14.6%

fdct 10223 8299 1924 23.2%

fibcall 928 991 63 6.4%

fir 11672 9941 1731 17.4%

inssort10 3789 3639 150 4.1%

inssort15 579 614 35 5.7%

inssort20 774 824 50 6.1%

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

36

inssort30 1164 1244 80 6.4%

jcomplex 802 735 67 9.1%

loop3 14212 14867 655 4.4%

ns 35164 37670 2506 6.7%

nsichneu 22244 10302 11942 115.9%
Table 8: Predicted vs. measured times for single benchmark program runs, NCNP architecture

Program Model Measured Diff Rel. diff

bs 210 187 23 12.3%

Cover 2941 5094 2153 42.3%

edn 213518 168261 45257 26.9%

esab_mod 582251 679220 96969 14.3%

fdct 7620 4953 2667 53.8%

fibcall 526 588 62 10.5%

fir 7026 6292 734 11.7%

inssort10 3227 2691 536 19.9%

inssort15 457 421 36 8.6%

inssort20 612 566 46 8.1%

inssort30 922 856 66 7.7%

jcomplex 519 492 27 5.5%

loop3 9122 9008 114 1.3%

ns 27975 30478 2503 8.2%

nsichneu 17460 7539 9921 131.6%
Table 9: Predicted vs. measured times for single benchmark program runs, NCSP architecture

Program Model Measured Diff Rel. diff

 bs 130 184 54 29.3%

cover 1837 3605 1768 49.0%

edn 140136 119291 20845 17.5%

esab_mod 368743 408076 39333 9.6%

fdct 4998 3940 1058 26.9%

fibcall 283 377 94 24.9%

fir 3923 4035 112 2.8%

inssort10 2094 1678 416 24.8%

inssort15 284 303 19 6.3%

inssort20 379 395 16 4.0%

inssort30 569 568 1 0.2%

jcomplex 282 307 25 8.1%

loop3 5017 6290 1273 20.2%

ns 18758 18725 33 0.2%

nsichneu 10969 10129 840 8.3%
Table 10: Predicted vs. measured times for single benchmark program runs, advanced architecture

5.2 Multi path runs with Integer operation benchmarks

The outcome of the multipath runs from the model running in SWEET using a subset of

Mälardalen benchmarks is:

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

37

Program BCETe WCETe

bsort100 6770 446998

esab_mod 693 1963089

insertsort 487 3682

minmax 84 145

ndes 170844 172748

nsichneu 12444 15344

BCETe/WCETe: estimated BCET/WCET
Table 11: BCET/WCET using SWEET analysis result, standard configuration

5.3 Single path runs with Floating-point

The results achieved by using floating-point instructions with a standard configuration are:

Program Model Measure

d

Diff Rel. diff

bsort100 392446 422446 30000 7.1%

cnt 19031 15776 3255 20.6%

expint 7788 7226 562 7.8%

lcdnum 381 473 92 19.5%

ludcmp 9288 3131 6157 196.6%

matmult 676874 506351 170523 33.7%

minver 6536 3235 3301 102.0%

mm 9772493 8242615 1529878 18.6%

qsort-exam 2888 4594 1706 37.1%

qurt 3537 272 3265 1200. 4%

select 3259 5933 2674 45.1%

ud 8838 11689 2851 24.4%
Table 12: Predicted vs. measured times for single floating-point benchmark program runs, standard

configuration

Program Model Measure

d

Diff Rel. diff

bsort100 506982 453129 53853 11.9%

cnt 22715 11875 10840 91.3%

expint 8888 8648 240 2.8%

lcdnum 438 501 63 12.6%

ludcmp 13148 3236 9912 306.3%

matmult 885923 571057 314866 55.1%

minver 8952 3393 5559 163.8%

mm 12878120 9172484 3705636 40.4%

qsort-exam 3900 3823 77 2.0%

qurt 4283 164 4119 2511.6%

select 4459 3961 498 12.6%

ud 11870 11553 317 2.7%
Table 13: Predicted vs. measured times for single floating-point benchmark program runs, NCNP

configuration

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

38

Program Model Measured Diff Rel. diff

bsort100 371415 312013 59402 19.0%

cnt 14701 9323 5378 57.7%

expint 6495 5710 785 13.7%

lcdnum 276 319 43 13.5%

ludcmp 9757 2369 7388 311.9%

matmult 597420 442143 155277 35.1%

minver 6500 2550 3950 154.9%

mm 8678437 7339252 1339185 18.2%

qsort-exam 2667 2698 31 1.1%

qurt 2802 102 2700 2647. 1%

select 3039 2939 100 3.4%

ud 8600 8651 51 0.6%
Table 14: Predicted vs. measured times for single floating-point benchmark program runs, NCSP

configuration

Program Model Measure

d

Diff Rel. diff

bsort100 240614 191037 49577 26.0%

cnt 8660 6095 2565 42.1%

expint 4680 3619 1061 29.3%

lcdnum 161 229 68 29.7%

ludcmp 6746 1635 5111 312.6%

matmult 362720 286220 76500 26.7%

minver 4397 1887 2510 133.0%

mm 5264241 5079570 184671 3.6%

qsort-exam 1610 1964 354 18.0%

qurt 1866 123 1743 1417. 1%

select 1895 2039 144 7.1%

ud 5599 5947 348 5.9%
Table 15: Predicted vs. measured times for single floating-point benchmark program runs, Advanced

configuration

As shown in Table 12, 13, 14 and 15 for all the four hardware architecture (standard, NCNP,

NCSP and advanced) there exist same trend that three huge outliers that underestimate the

timing analysis, but the deviation produced by the qurt benchmark in all the hardware

architecture is too large and it is assumed that SWEET cannot produce such deviation from

the real measured times. Both ludcmp and minver are matrix computations having relatively

regular loop structures, admittedly with some conditionals in the bodies of some loops. The

deviation produced by them is 100-200%. One way to find the source of that outlier of these

two benchmarks was to try with advanced architecture like NCSP to see if the result is equally

bad. Moreover, qurt is short code having nested if-statements which may have an effect on

the outcome. In order to find the source of this outlier, some checks have been done which

identified the potential cause:-

 qurt is converted to a pure-integer program (just replace every float to integer)

to check if the problem persists. The hypothesis is that if the outlier did not persist

then it is not related to the handling of the float. After all occurrence of float in qurt

converted to integer. The result achieved is:-

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

39

 Qurt (float, original) Qurt (integer, converted)

SimpleScalar 272 4531

SWEET 3537 4003

Relative difference 1220.4% 11.65%
Table 16: Comparison Integer vs. float qurt benchmarks program measured times

The result shown in Table 16 proved that the reason for the outlier is not related to handling

float. Further checks, like:

 Checking the output from SimpleScalar for the outliers to see whether there are similar

discrepancies for the branch predictor hit ratio as for nsichneu, was carried out. It

proved the branch prediction produced for qurt by SimpleScalar could not show any

difference that causes the problem. Another check was:

 A SimpleScalar simulator to see if it behaves the same as running the program on a

PC, i.e. insert some "printf ()" test outputs - to make sure the problem is not the

simulator.

Table 17: Comparison simulator vs. real hardware 64 bit architecture Printf () result

The result shown in Table 17 demonstrates that the SimpleScalar simulator is not simulating

the float-benchmarks properly in the machine (64-bit OS and hardware architecture) used for

the thesis. This result made the output achieved from SimpleScalar in Table 12, 13, 14 and 15

are questionable, which may also be useless.

A further inquiry has been done to find out why the SimpleScalar simulator was not working

to see properly with the floating-point instruction. More benchmarks were tried using printf

() if further benchmarks could be found that has the same result with the simulator running

on the same real hardware architecture. The hypothesis was that if some benchmark could

produce the same result, the problem must be in the benchmarks in question. This would

enable the dropping of those that are not simulated properly from further experiment. But

none of the benchmarks produced the same result and it has been found later that the reason

was that simulator does not simulate properly with 64-bit OS. The solution proposed is to

setup a VM of 32-bit and run experiment.

Benchmark X64_output Sim-outorder_output

qurt 1.000000

-3.000000

1.000000

1.000000

0.000000

1.000000

-16.000000

-2.000000

0.000000

0.000000

0.000000

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

40

5.4 Problem Encountered

As the linux version of SWEET is hardly used, the setup process took more time than

expected. Moreover, regular updates made in SWEET often during the whole process of the

thesis and it created several times minor problems on several occasions. These could have

easily been avoided by sending some information of what changes had been made every time

it was updated.

After the SimpleScalar configuration files for various hardware architecture (i.e. NCNP,

NCSP, advanced) was supplied, the result that was produced was similar to standard

configuration. The problem was with the advanced configuration it has not been a real

"advanced" configuration but it was just the standard configuration dump by sim-outorder

without changes. Later, a real advanced configuration with pipelining, caching and multiple

alus/multipliers/dividers was implemented.

Last but not least, even though I have worked with a hardworking, cooperative and supportive

group, I would like to mention that there was communication latency as I had more than four

experts actively involved during the whole process of the thesis. Moreover, one of my

important supervisors is located in Germany, which meant that I was able to meet him in

person only twice. Most communication was through telephone or emails, when face to face

meetings would have made my understanding of some concepts easier and less time-

consuming.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

41

6. RELATED WORK

The concept of early timing analysis has been investigated using different approaches

throughout the last two decades. In this thesis some of the related works, which are similar to

the work of this thesis are present briefly.

In [27] Nenova, Kästner used the TimingExplorer tool based on aiT [28] which aids to predict

the early timing analysis using a source-code and enables the identification of suitable

hardware architecture for real-time systems. The available source code is compiled and linked

to each core in question and analyzed using TimingExplorer. The result of analysis is a WCET

estimation of each code with the given hardware configuration.

Ferdinand and Heckmann [29] presented the aiT combined with a model-based design and

automatic code generation SCADE and ASCET to achieve more secure and better-performing

systems while decreasing time-to-market. aiT tries to find the upper bounds of a given

program in a reasonable time while taking all possible hardware architecture into

consideration. The integration of aiT with ASCET and SCADE is designed to be accessible

from within respective graphical user interface. This combination made the static analysis tool

achieve a high precision of the estimation.

Engblom, Ermedahl, Sjödin and Gustafsson has presented the WCET analysis of an

embedded system in [30] focusing on some aspects which affect the methods and tools being

developed. Their main target was to module architecture for WCET tool in which various

WCET analysis components were used. The architecture allows integration of components

along with comparison of methods to implement different components. They have done two

control-flow analysis methods and a pipeline analysis. The target hardware used in this paper

is a micro-controller simulator and a prototype of that architecture is developed with several

of the components. To calculate tight and safe WCET estimates, a method is integrated that

allows flow analysis and hardware analysis including the effects of caches. Moreover, a

methodology is used to validate the components, pipeline analysis and calculation methods.

Guisto, Martin, and Harcourt [31] discuss in their paper how to derive a method for

identifying a linear timing model for Source-Level Simulation based on task samples from

particular domains using regression analysis and statistical-based predictor equations for SW

estimation. Lisper and Santos [32] present a new approach to measurement-based WCET

based on model identification which is end-to-end measurements of programs. The result

achieved from the model does not underestimate any observed execution times. This is done

to identify execution times for basic blocks in specific programs using binary level code.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

42

7. FUTURE WORK

The target of this thesis was to evaluate the method for identifying timing models. The result

achieved for single paths using integer operation benchmarks has been satisfactory in the

entire hardware configuration (i.e. standard, NCNP, NCSP and advanced) produced deviation

of less 20% on average. But the result achieved from multipath runs needs to calculate the real

BCET/WCET for those selected benchmarks in Table 11, and compare the outcome and find

out the range of the deviation if it is similar to the result achieve in the RNTS 2011.

Furthermore, it is also important to identify floating-point benchmarks which can be accessed

using multi-path source level timing.

The evaluation of floating-points has not been done prior to this thesis, needs to be deepened

by setting up a 32-bit VM (Virtual machine) and see if the SimpleScalar simulator will work

properly. Above all, it would be interesting and, could mean advancement for the research of

WCET in evaluating the timing models of floating-points benchmarks are similar to integer

operation benchmarks. This will enable the early timing analysis to be vast and applied to a

wide range of hardware architecture configurations and in different kinds of operations. As a

result, the risk of not meeting timing property of safety critical systems will be reduced.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

43

8. SUMMARY and CONCLUSION

As the traditional systems have been fully replaced by embedded systems, early timing

analysis is vital during the early stages of software development for real-time systems even

before hardware is supplied and any code is compiled. To achieve this, early analysis is done

on source code to produce a source-level timing analysis. The work that has been

accomplished in this thesis is to evaluate the methods used to identify timing models. SWEET

is a research WCET analysis tool developed by Mälardalen University and is used to produce

the source-level timing analysis and calculations.

The methods used to identify timing models for a given hardware architecture has been

evaluated using SWEET, and is compared with a result that is generated from a tool (i.e.

SimpleScalar) which simulates hardware architecture. The result of this thesis showed that the

source-level timing analysis for single paths using integer operation benchmarks has been

satisfactory and the entire hardware configuration (i.e. standard, NCNP, NCSP and advanced)

used in this thesis produced a deviation of less than 20% on average.

Moreover, it has produced a multipath source-level analysis using subsets of benchmark codes

which are multipath programs. Floating-point source level timing analysis has also been

addressed in this thesis (which is in its early stage). This thesis gives a starting point and

roadmap on how to continue with that experiment in related future work. Finally, some of the

results produced in this thesis have been used in the RNTS2011 which was published in

September 2011.

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

44

REFERENCES

 [1] A. Ermedahl, R. Wilhelm, S. Thesing, The Worst-Case Execution-Time Problem—

Overview of Methods and Survey of Tools, ACM Transactions on Embedded

Computing Systems, Vol 7, No. 3, Article 36, April 2008

[2] P. Altenbernd, A. Ermedahl, B. Lisper and J. Gustafsson, Automatic Generation of

Timing Models of Timing Analysis of High-Level Code, 19
th

 International Conference

on Real-Time and Network Systems (RTNS 2011), Nantes, France, September 2011

[3] SimpleScalar LLC,

 http://www.simplescalar.com/ [Accessed 31/08/2011]

[4] A. Ermedahl, B. Lisper and J. Gustafsson, L. Källberg, C. Sandberg, ALF – A

Language for WCET Flow Analysis. In Niklas Holsti, editor, Proc. 9Th International

Workshop on Worst-Case Execution Time Analysis (WCET'2009), page 1-11, Dublin,

Ireland, June 2009. OCG

[5] Saranya Ntarajan, Developing an ALF interpreter for the SWEET WCET analysis tool,

EURECA Exchange Student, Master’s thesis, Department of Computer Science and

Engineering, Mälardalen University, Sweden

[6] Mohammad Nazrul Islam, Extending WCET benchmark programs, Master’s thesis,

Department of Computer Science, Mälardalen University, Sweden, November 2011

[7] J. Gustafsson, A. Betts, A. Ermedahl and B. Lisper, the Mälardalen WCET

Benchmarks: Past, Present and Future, Proc. 10th International Workshop on Worst-

Case Execution Time Analysis (WCET'2010), pages 137-147, Brussels, Belgium, July

2010.

[8] Mälardalen WCET Benchmarks,

http://www.mrtc.mdh.se/projects/wcet/benchmarks.html [Accessed 09/09/2011]

[9] Introduction to SimpleScalar,

http://www.ecs.umass.edu/ece/koren/architecture/Simplescalar/SimpleScalar_introduct

ion.htm [Accessed 13/10/2011]

[10] T. Austin, E. Larson and D. Ernst, SimpleScalar: An Infrastructure for Computer

System Modeling, University of Michigan, USA, February 2002

[11] WCET project/SWEET

http://www.mrtc.mdh.se/projects/wcet/sweet [Accessed 23/09/2011]

[12] System of linear equations

http://en.wikipedia.org/wiki/System_of_linear_equations [Accessed 02/11/2011]

[13] Linear equation

http://en.wikipedia.org/wiki/Linear_equation [Accessed 02/11/2011]

[14] Least squares

http://en.wikipedia.org/wiki/Least_squares [Accessed 02/11/2011]

[15] Simulated Annealing

http://en.wikipedia.org/wiki/Simulated_annealing [Accessed 02/11/2011]

[16] Linear Equations

http://cs.gmu.edu/cne/modules/dau/algebra/equations/linear1_frm.html

[Accessed 02/11/2011]

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

45

[17] Least Squares Fitting

http://mathworld.wolfram.com/LeastSquaresFitting.html [Accessed 11/11/2011]

[18] The Method of Least Squares

http://web.williams.edu/go/math/sjmiller/public_html/BrownClasses/54/handouts/Met

hodLeastSquares.pdf [Accessed 11/11/2011]

[19] D. Bertsimas and J. Tsitsiklis, Simulated Annealing, Statistical Science, Vol.8, No.1,

10-15, 1993

[20] Simulated Annealing: Find global minima for bounded nonlinear problems

 http://www.mathworks.se/discovery/simulated-annealing.html [Accessed 02/11/2011]

[21] Least Square Method

 http://www.efunda.com/math/leastsquares/leastsquares.cfm [Accessed 02/11/2011]

[22] R. Kirner, P. Puschner, Classification of WCET Analysis Techniques, Proceedings of

the Eighth IEEE International Symposium on Object-Oriented Real-Time Distributed

Computing (ISORC’05), May 2005

[23] D. Burger, T. M. Austin, The SimpleScalar Tool Set, Version 2.0, ACM SIGARCH,

Vol. 25 Issue 3, June 1997

[24] D. Devaki AR, A Translator from CRL2 representation of PowerPC Assembly to ALF,

Master’s thesis, Department of Computer Science, Mälardalen University, Sweden,

July 2009

[25] Simulated Annealing algorithm

 http://www.gnu.org/software/gsl/manual/html_node/Simulated-Annealing-

algorithm.html [Accessed 11/11/2011]

[26] P. Altenbernd, Equation Solver documentation [Accessed 10/05/2011]

[27] S. Nenova, D. Kästner, Source-level worst-case timing estimation and architecture

exploration in early design phases. In N. Holsti editor, Proc. 9
th

 International

Workshop on Worst-Case Execution Time Analysis (WCET’2009), pages 12-22,

Dublin, Ireland, June 2009

[28] C. Ferdinand, R.Heckmann, and B.Franzen, Static memory and timing analysis of

embedded systems code, 3
rd

 European Symposium on Verification and Validation of

Software Systems (VVV’07), Eindhoven, The Netherlands, number 07-04 in TUE

computer Science Reports, page 153-163, 2007

[29] C. Ferdinand, R. Heckmann, Worst-Case Execution Time – a Tool Provider’s

Perspective, 11
th

 IEEE Symposium on Object Oriented Real-Time Distributed

Computing (ISORC2008), pages 340-345, Orlando, Fl, USA, May 2008

[30] J. Engblom, A. Ermedahl, M. Sjödin and J. Gustafsson and H. Hansson, Worst-case

execution-time analysis for embedded real-time systems, International Journal on

Software Tools for Technology Transfer, vol 4, nr 4, p437-455 , 2002

[31] P. Guisto, G. Martin, and E. Harcourt, Reliable estimation of execution time of

embedded software. In Proc Conference on Design, Automation and Test in Europe

(DAC 2001), Los Alamitos, CA, USA, 2001. IEEE Computer Society

[32] B. Lisper and M. Santos, Model identification for WCET analysis. In Proc 15
Th

 IEEE

Real-Time and Embedded Technology and Applications Symposium (RTAS'09), page

55-64, San Francisco, CA, Apr. 2009. IEEE Computer Society

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

www.F
irs

tR
an

ke
r.c

om

46

[33] MELMAC, MELMAC homepage, 2009

 http://www.complang.tuwien.ac.at/gergo/melmac [Accessed 12/05/2012]

[34] aiT Worst-Case Execution Time Analyzers,

 http://www.absint.com/ait/ [Accessed 01/06/2012]

www.FirstRanker.com www.FirstRanker.com

www.FirstRanker.com

